Upload 2 files
Browse files- configuration_gigacheck.py +28 -0
- modeling_gigacheck.py +223 -0
configuration_gigacheck.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Optional, Any
|
| 2 |
+
from transformers import MistralConfig
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class GigaCheckConfig(MistralConfig):
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
with_detr: bool = False,
|
| 9 |
+
detr_config: Optional[Dict[str, Any]] = None,
|
| 10 |
+
freeze_backbone: bool = False,
|
| 11 |
+
id2label: Dict[int, str] = None,
|
| 12 |
+
num_labels: int = 2,
|
| 13 |
+
max_length: int = 1024,
|
| 14 |
+
conf_interval_thresh=0.8,
|
| 15 |
+
**kwargs
|
| 16 |
+
):
|
| 17 |
+
super().__init__(**kwargs)
|
| 18 |
+
|
| 19 |
+
self.with_detr = with_detr
|
| 20 |
+
self.detr_config = detr_config
|
| 21 |
+
self.freeze_backbone = freeze_backbone
|
| 22 |
+
self.id2label = id2label
|
| 23 |
+
self.num_labels = num_labels
|
| 24 |
+
self.max_length = max_length
|
| 25 |
+
self.conf_interval_thresh = conf_interval_thresh
|
| 26 |
+
|
| 27 |
+
if self.id2label:
|
| 28 |
+
self.id2label = {int(k): v for k, v in self.id2label.items()}
|
modeling_gigacheck.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
from transformers.modeling_outputs import ModelOutput
|
| 3 |
+
from typing import List, Dict, Optional, Union, Tuple
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from gigacheck.model.mistral_ai_detector import MistralAIDetectorForSequenceClassification
|
| 8 |
+
from gigacheck.model.src.interval_detector.span_utils import span_cxw_to_xx
|
| 9 |
+
|
| 10 |
+
from .configuration_gigacheck import GigaCheckConfig
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@dataclass
|
| 14 |
+
class GigaCheckOutput(ModelOutput):
|
| 15 |
+
"""
|
| 16 |
+
Output type for GigaCheck model.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
pred_label_ids (torch.Tensor): [Batch] Indices of the predicted classes (Human/AI/Mixed).
|
| 20 |
+
classification_head_probs (torch.Tensor): [Batch, Num_Classes] Softmax probabilities.
|
| 21 |
+
ai_intervals (List[torch.Tensor]): List of length Batch. Each element is a tensor of shape [Num_Intervals, 3]
|
| 22 |
+
containing (start, end, score) for detected AI-generated spans.
|
| 23 |
+
"""
|
| 24 |
+
pred_label_ids: Optional[torch.Tensor] = None
|
| 25 |
+
classification_head_probs: Optional[torch.Tensor] = None
|
| 26 |
+
ai_intervals: Optional[List[torch.Tensor]] = None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class GigaCheckForDetection(MistralAIDetectorForSequenceClassification):
|
| 30 |
+
config_class = GigaCheckConfig
|
| 31 |
+
|
| 32 |
+
def __init__(self, config: GigaCheckConfig):
|
| 33 |
+
super().__init__(
|
| 34 |
+
config,
|
| 35 |
+
with_detr = config.with_detr,
|
| 36 |
+
detr_config = config.detr_config,
|
| 37 |
+
ce_weights = None,
|
| 38 |
+
freeze_backbone = False,
|
| 39 |
+
id2label = config.id2label,
|
| 40 |
+
)
|
| 41 |
+
self.trained_classification_head = True
|
| 42 |
+
self._max_len = self.config.max_length
|
| 43 |
+
self.tokenizer = None
|
| 44 |
+
self.conf_interval_thresh = config.conf_interval_thresh
|
| 45 |
+
|
| 46 |
+
@classmethod
|
| 47 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, *model_args, **kwargs): # type: ignore
|
| 48 |
+
"""Loads a pretrained GigaCheck model from a local path or the Hugging Face Hub.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
pretrained_model_name_or_path (str): The name or path of the pretrained model.
|
| 52 |
+
model_args: Additional positional arguments passed to parent class.
|
| 53 |
+
kwargs: Additional keyword arguments passed to parent class.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
GigaCheckForSequenceClassification: The initialized model with loaded weights and initialized tokenizer.
|
| 57 |
+
"""
|
| 58 |
+
# set model weights
|
| 59 |
+
model = super().from_pretrained(
|
| 60 |
+
pretrained_model_name_or_path,
|
| 61 |
+
*model_args,
|
| 62 |
+
**kwargs,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
if model.config.with_detr:
|
| 66 |
+
extractor_dtype = getattr(torch, model.config.detr_config["extractor_dtype"])
|
| 67 |
+
print(f"Using dtype={extractor_dtype} for {type(model.model)}")
|
| 68 |
+
if extractor_dtype == torch.bfloat16:
|
| 69 |
+
model.model.to(torch.bfloat16)
|
| 70 |
+
model.classification_head.to(torch.bfloat16)
|
| 71 |
+
|
| 72 |
+
if model.config.to_dict().get("trained_classification_head", True) is False:
|
| 73 |
+
# when only detr was trained
|
| 74 |
+
model.trained_classification_head = False
|
| 75 |
+
|
| 76 |
+
model.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
| 77 |
+
|
| 78 |
+
# Ensure pad token exists
|
| 79 |
+
model.config.pad_token_id = model.tokenizer.pad_token_id \
|
| 80 |
+
if model.tokenizer.pad_token_id is not None else model.tokenizer.unk_token_id
|
| 81 |
+
if model.tokenizer.pad_token_id is None:
|
| 82 |
+
model.tokenizer.pad_token_id = model.tokenizer.unk_token_id
|
| 83 |
+
|
| 84 |
+
model.config.bos_token_id = model.tokenizer.bos_token_id
|
| 85 |
+
model.config.eos_token_id = model.tokenizer.eos_token_id
|
| 86 |
+
model.config.unk_token_id = model.tokenizer.unk_token_id
|
| 87 |
+
|
| 88 |
+
return model
|
| 89 |
+
|
| 90 |
+
def _get_inputs(self, texts: List[str]) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 91 |
+
"""
|
| 92 |
+
Tokenizes a batch of texts handling specific truncation logic to preserve exact text length mapping.
|
| 93 |
+
"""
|
| 94 |
+
assert self._max_len is not None and self.tokenizer is not None, "Model must be initialized"
|
| 95 |
+
|
| 96 |
+
# 1. Tokenize all texts without special tokens/padding first
|
| 97 |
+
raw_encodings = self.tokenizer(texts, add_special_tokens=False)
|
| 98 |
+
|
| 99 |
+
batch_features = [] # List of dicts for tokenizer.pad
|
| 100 |
+
text_lens = []
|
| 101 |
+
|
| 102 |
+
content_max_len = self._max_len - 2
|
| 103 |
+
bos_id = self.tokenizer.bos_token_id
|
| 104 |
+
eos_id = self.tokenizer.eos_token_id
|
| 105 |
+
|
| 106 |
+
for i, tokens in enumerate(raw_encodings.input_ids):
|
| 107 |
+
if len(tokens) > content_max_len:
|
| 108 |
+
tokens = tokens[:content_max_len]
|
| 109 |
+
# Convert back to string to get the exact character length of the truncated part
|
| 110 |
+
cur_text = self.tokenizer.decode(tokens, skip_special_tokens=True)
|
| 111 |
+
text_len = len(cur_text)
|
| 112 |
+
else:
|
| 113 |
+
# If no truncation, use the original text length
|
| 114 |
+
text_len = len(texts[i])
|
| 115 |
+
|
| 116 |
+
# Construct final token sequence: [BOS] + tokens + [EOS]
|
| 117 |
+
final_tokens = [bos_id] + tokens + [eos_id]
|
| 118 |
+
|
| 119 |
+
# Append as dictionary for tokenizer.pad
|
| 120 |
+
batch_features.append({"input_ids": final_tokens})
|
| 121 |
+
text_lens.append(text_len)
|
| 122 |
+
|
| 123 |
+
# 2. Pad using tokenizer.pad
|
| 124 |
+
padded_output = self.tokenizer.pad(
|
| 125 |
+
batch_features,
|
| 126 |
+
padding=True,
|
| 127 |
+
return_tensors="pt"
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
input_ids = padded_output["input_ids"].to(self.device)
|
| 131 |
+
attention_mask = padded_output["attention_mask"].to(self.device)
|
| 132 |
+
|
| 133 |
+
return input_ids, attention_mask, text_lens
|
| 134 |
+
|
| 135 |
+
@staticmethod
|
| 136 |
+
def _get_ai_intervals(detr_out: Dict[str, torch.Tensor], text_lens: List[int], conf_interval_thresh: float) -> List[torch.Tensor]:
|
| 137 |
+
"""
|
| 138 |
+
Converts DETR outputs to absolute text intervals.
|
| 139 |
+
"""
|
| 140 |
+
pred_spans = detr_out["pred_spans"] # (batch_size, #queries, 2)
|
| 141 |
+
src_logits = detr_out["pred_logits"] # (batch_size, #queries, #classes=2)
|
| 142 |
+
assert len(text_lens) == pred_spans.shape[0]
|
| 143 |
+
|
| 144 |
+
# Take probs for foreground objects only (ind = 0)
|
| 145 |
+
pred_probs = torch.softmax(src_logits, dim=-1)[:, :, 0:1] # [Batch, Queries, 1]
|
| 146 |
+
|
| 147 |
+
final_preds_batch = []
|
| 148 |
+
|
| 149 |
+
for i, length in enumerate(text_lens):
|
| 150 |
+
# Convert center-width [0,1] to [0, length] absolute start-end
|
| 151 |
+
# pred_spans[i]: [Queries, 2]
|
| 152 |
+
spans_abs = to_absolute(pred_spans[i], length)
|
| 153 |
+
|
| 154 |
+
# Concat spans and scores: [Queries, 3] -> (start, end, score)
|
| 155 |
+
scores = pred_probs[i]
|
| 156 |
+
preds_i = torch.cat([spans_abs, scores], dim=1)
|
| 157 |
+
|
| 158 |
+
# Filter by confidence threshold
|
| 159 |
+
mask = preds_i[:, 2] > conf_interval_thresh
|
| 160 |
+
filtered_preds = preds_i[mask]
|
| 161 |
+
|
| 162 |
+
final_preds_batch.append(filtered_preds)
|
| 163 |
+
|
| 164 |
+
return final_preds_batch
|
| 165 |
+
|
| 166 |
+
def forward(
|
| 167 |
+
self,
|
| 168 |
+
text: Union[str, List[str]],
|
| 169 |
+
return_dict: Optional[bool] = None,
|
| 170 |
+
conf_interval_thresh: float = None,
|
| 171 |
+
) -> Union[Tuple, GigaCheckOutput]:
|
| 172 |
+
|
| 173 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 174 |
+
conf_interval_thresh = conf_interval_thresh if conf_interval_thresh is not None else self.config.conf_interval_thresh
|
| 175 |
+
|
| 176 |
+
if isinstance(text, str):
|
| 177 |
+
text = [text]
|
| 178 |
+
|
| 179 |
+
input_ids, attention_mask, text_lens = self._get_inputs(text)
|
| 180 |
+
|
| 181 |
+
output = super().forward(
|
| 182 |
+
input_ids=input_ids,
|
| 183 |
+
attention_mask=attention_mask,
|
| 184 |
+
return_dict=True,
|
| 185 |
+
return_detr_output=self.config.with_detr,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
pred_label_ids = None
|
| 189 |
+
classification_head_probs = None
|
| 190 |
+
ai_intervals = None
|
| 191 |
+
|
| 192 |
+
# 1. Classification Head Processing
|
| 193 |
+
if not self.config.with_detr:
|
| 194 |
+
logits = output.logits
|
| 195 |
+
elif self.trained_classification_head:
|
| 196 |
+
logits, _ = output.logits
|
| 197 |
+
else:
|
| 198 |
+
logits = None
|
| 199 |
+
|
| 200 |
+
if logits is not None:
|
| 201 |
+
# logits: [Batch, NumClasses]
|
| 202 |
+
probs = logits.to(torch.float32).softmax(dim=-1)
|
| 203 |
+
pred_label_ids = torch.argmax(probs, dim=-1) # [Batch]
|
| 204 |
+
classification_head_probs = probs # [Batch, NumClasses]
|
| 205 |
+
|
| 206 |
+
# 2. Interval Detection (DETR) Processing
|
| 207 |
+
if self.config.with_detr:
|
| 208 |
+
_, detr_out = output.logits
|
| 209 |
+
ai_intervals = self._get_ai_intervals(detr_out, text_lens, conf_interval_thresh)
|
| 210 |
+
|
| 211 |
+
if not return_dict:
|
| 212 |
+
return (pred_label_ids, classification_head_probs, ai_intervals)
|
| 213 |
+
|
| 214 |
+
return GigaCheckOutput(
|
| 215 |
+
pred_label_ids=pred_label_ids,
|
| 216 |
+
classification_head_probs=classification_head_probs,
|
| 217 |
+
ai_intervals=ai_intervals,
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def to_absolute(pred_spans: torch.Tensor, text_len: int) -> torch.Tensor:
|
| 222 |
+
spans = span_cxw_to_xx(pred_spans) * text_len
|
| 223 |
+
return torch.clamp(spans, 0, text_len)
|