ikellllllll commited on
Commit
e499517
·
verified ·
1 Parent(s): 6fa1b7a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +109 -193
README.md CHANGED
@@ -1,207 +1,123 @@
1
  ---
2
  base_model: Qwen/Qwen2.5-VL-3B-Instruct
3
  library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:Qwen/Qwen2.5-VL-3B-Instruct
 
 
7
  - lora
8
  - transformers
 
9
  ---
10
 
11
- # Model Card for Model ID
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
 
 
 
 
 
15
 
 
 
 
 
16
 
17
  ## Model Details
18
 
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
205
- ### Framework versions
206
-
207
- - PEFT 0.17.1
 
1
  ---
2
  base_model: Qwen/Qwen2.5-VL-3B-Instruct
3
  library_name: peft
4
+ pipeline_tag: image-text-to-text
5
  tags:
6
+ - vision
7
+ - vqa
8
+ - qwen2.5-vl
9
  - lora
10
  - transformers
11
+ license: apache-2.0
12
  ---
13
 
14
+ # VQA Base Model
15
 
16
+ Fine-tuned VQA model using Qwen2.5-VL-3B-Instruct with LoRA.
17
 
18
+ **Performance:**
19
+ - **Validation Accuracy: 88.69%** (345/389)
20
+ - **High-res (512px) Accuracy: 89.72%** (349/389)
21
+ - Baseline model for the project
22
 
23
+ **Part of 3-Model Ensemble:**
24
+ - Combined with Improved Epoch 1 and Improved Epoch 2
25
+ - **Ensemble Validation: 90.75%**
26
+ - **Ensemble Test (Kaggle): 91.82%**
27
 
28
  ## Model Details
29
 
30
+ - **Base Model:** Qwen/Qwen2.5-VL-3B-Instruct
31
+ - **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
32
+ - **Quantization:** 4-bit (NF4)
33
+ - **Hardware:** NVIDIA A100 40GB
34
+ - **Training:** Fine-tuned on VQA dataset (604 samples)
35
+
36
+ ## LoRA Configuration
37
+
38
+ ```python
39
+ {
40
+ "r": 16,
41
+ "lora_alpha": 32,
42
+ "lora_dropout": 0.05,
43
+ "target_modules": [
44
+ "q_proj", "k_proj", "v_proj", "o_proj",
45
+ "gate_proj", "up_proj", "down_proj"
46
+ ]
47
+ }
48
+ ```
49
+
50
+ ## Usage
51
+
52
+ ```python
53
+ from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
54
+ from peft import PeftModel
55
+ import torch
56
+
57
+ # Load model with 4-bit quantization
58
+ bnb_config = BitsAndBytesConfig(
59
+ load_in_4bit=True,
60
+ bnb_4bit_use_double_quant=True,
61
+ bnb_4bit_quant_type="nf4",
62
+ bnb_4bit_compute_dtype=torch.bfloat16
63
+ )
64
+
65
+ base_model = AutoModelForVision2Seq.from_pretrained(
66
+ "Qwen/Qwen2.5-VL-3B-Instruct",
67
+ quantization_config=bnb_config,
68
+ device_map="auto",
69
+ trust_remote_code=True
70
+ )
71
+
72
+ model = PeftModel.from_pretrained(base_model, "ikellllllll/vqa-base-model")
73
+ processor = AutoProcessor.from_pretrained(
74
+ "Qwen/Qwen2.5-VL-3B-Instruct",
75
+ min_pixels=512*512,
76
+ max_pixels=512*512,
77
+ trust_remote_code=True
78
+ )
79
+
80
+ # IMPORTANT: Set left-padding for decoder-only models
81
+ processor.tokenizer.padding_side = 'left'
82
+ ```
83
+
84
+ ## Inference Settings
85
+
86
+ - **Image Resolution:** 512×512px (higher resolution recommended)
87
+ - **Batch Size:** 32 (for A100 40GB)
88
+ - **Padding:** Left-padding (critical for decoder-only models!)
89
+
90
+ ## Dataset
91
+
92
+ - **Training:** 604 VQA samples
93
+ - **Validation:** 389 VQA samples
94
+ - **Test:** 3,887 VQA samples
95
+
96
+ ## Performance Notes
97
+
98
+ - 384px resolution: 88.69% validation accuracy
99
+ - 512px resolution: 89.72% validation accuracy (+1.03%)
100
+ - **Higher resolution significantly improves performance**
101
+
102
+ ## Links
103
+
104
+ - **GitHub Repository:** [SSAFY_AI_competition](https://github.com/ikellllllll/SSAFY_AI_competition)
105
+ - **Related Models:**
106
+ - [vqa-improved-epoch1](https://huggingface.co/ikellllllll/vqa-improved-epoch1) (90.49%)
107
+ - [vqa-improved-epoch2](https://huggingface.co/ikellllllll/vqa-improved-epoch2) (90.23%)
108
+
109
+ ## Citation
110
+
111
+ ```bibtex
112
+ @misc{vqa-base-model,
113
+ author = {Team 203},
114
+ title = {VQA Base Model},
115
+ year = {2025},
116
+ publisher = {HuggingFace},
117
+ howpublished = {\url{https://huggingface.co/ikellllllll/vqa-base-model}}
118
+ }
119
+ ```
120
+
121
+ ## License
122
+
123
+ Apache 2.0