Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,207 +1,123 @@
|
|
| 1 |
---
|
| 2 |
base_model: Qwen/Qwen2.5-VL-3B-Instruct
|
| 3 |
library_name: peft
|
| 4 |
-
pipeline_tag: text-
|
| 5 |
tags:
|
| 6 |
-
-
|
|
|
|
|
|
|
| 7 |
- lora
|
| 8 |
- transformers
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
|
| 13 |
-
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
[
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
#### Testing Data
|
| 115 |
-
|
| 116 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
-
|
| 118 |
-
[More Information Needed]
|
| 119 |
-
|
| 120 |
-
#### Factors
|
| 121 |
-
|
| 122 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
-
|
| 124 |
-
[More Information Needed]
|
| 125 |
-
|
| 126 |
-
#### Metrics
|
| 127 |
-
|
| 128 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
-
|
| 130 |
-
[More Information Needed]
|
| 131 |
-
|
| 132 |
-
### Results
|
| 133 |
-
|
| 134 |
-
[More Information Needed]
|
| 135 |
-
|
| 136 |
-
#### Summary
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
## Model Examination [optional]
|
| 141 |
-
|
| 142 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
-
|
| 144 |
-
[More Information Needed]
|
| 145 |
-
|
| 146 |
-
## Environmental Impact
|
| 147 |
-
|
| 148 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 149 |
-
|
| 150 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
-
|
| 152 |
-
- **Hardware Type:** [More Information Needed]
|
| 153 |
-
- **Hours used:** [More Information Needed]
|
| 154 |
-
- **Cloud Provider:** [More Information Needed]
|
| 155 |
-
- **Compute Region:** [More Information Needed]
|
| 156 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
-
|
| 158 |
-
## Technical Specifications [optional]
|
| 159 |
-
|
| 160 |
-
### Model Architecture and Objective
|
| 161 |
-
|
| 162 |
-
[More Information Needed]
|
| 163 |
-
|
| 164 |
-
### Compute Infrastructure
|
| 165 |
-
|
| 166 |
-
[More Information Needed]
|
| 167 |
-
|
| 168 |
-
#### Hardware
|
| 169 |
-
|
| 170 |
-
[More Information Needed]
|
| 171 |
-
|
| 172 |
-
#### Software
|
| 173 |
-
|
| 174 |
-
[More Information Needed]
|
| 175 |
-
|
| 176 |
-
## Citation [optional]
|
| 177 |
-
|
| 178 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
-
|
| 180 |
-
**BibTeX:**
|
| 181 |
-
|
| 182 |
-
[More Information Needed]
|
| 183 |
-
|
| 184 |
-
**APA:**
|
| 185 |
-
|
| 186 |
-
[More Information Needed]
|
| 187 |
-
|
| 188 |
-
## Glossary [optional]
|
| 189 |
-
|
| 190 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
-
|
| 192 |
-
[More Information Needed]
|
| 193 |
-
|
| 194 |
-
## More Information [optional]
|
| 195 |
-
|
| 196 |
-
[More Information Needed]
|
| 197 |
-
|
| 198 |
-
## Model Card Authors [optional]
|
| 199 |
-
|
| 200 |
-
[More Information Needed]
|
| 201 |
-
|
| 202 |
-
## Model Card Contact
|
| 203 |
-
|
| 204 |
-
[More Information Needed]
|
| 205 |
-
### Framework versions
|
| 206 |
-
|
| 207 |
-
- PEFT 0.17.1
|
|
|
|
| 1 |
---
|
| 2 |
base_model: Qwen/Qwen2.5-VL-3B-Instruct
|
| 3 |
library_name: peft
|
| 4 |
+
pipeline_tag: image-text-to-text
|
| 5 |
tags:
|
| 6 |
+
- vision
|
| 7 |
+
- vqa
|
| 8 |
+
- qwen2.5-vl
|
| 9 |
- lora
|
| 10 |
- transformers
|
| 11 |
+
license: apache-2.0
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# VQA Base Model
|
| 15 |
|
| 16 |
+
Fine-tuned VQA model using Qwen2.5-VL-3B-Instruct with LoRA.
|
| 17 |
|
| 18 |
+
**Performance:**
|
| 19 |
+
- **Validation Accuracy: 88.69%** (345/389)
|
| 20 |
+
- **High-res (512px) Accuracy: 89.72%** (349/389)
|
| 21 |
+
- Baseline model for the project
|
| 22 |
|
| 23 |
+
**Part of 3-Model Ensemble:**
|
| 24 |
+
- Combined with Improved Epoch 1 and Improved Epoch 2
|
| 25 |
+
- **Ensemble Validation: 90.75%**
|
| 26 |
+
- **Ensemble Test (Kaggle): 91.82%**
|
| 27 |
|
| 28 |
## Model Details
|
| 29 |
|
| 30 |
+
- **Base Model:** Qwen/Qwen2.5-VL-3B-Instruct
|
| 31 |
+
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
|
| 32 |
+
- **Quantization:** 4-bit (NF4)
|
| 33 |
+
- **Hardware:** NVIDIA A100 40GB
|
| 34 |
+
- **Training:** Fine-tuned on VQA dataset (604 samples)
|
| 35 |
+
|
| 36 |
+
## LoRA Configuration
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
{
|
| 40 |
+
"r": 16,
|
| 41 |
+
"lora_alpha": 32,
|
| 42 |
+
"lora_dropout": 0.05,
|
| 43 |
+
"target_modules": [
|
| 44 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
| 45 |
+
"gate_proj", "up_proj", "down_proj"
|
| 46 |
+
]
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## Usage
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
|
| 54 |
+
from peft import PeftModel
|
| 55 |
+
import torch
|
| 56 |
+
|
| 57 |
+
# Load model with 4-bit quantization
|
| 58 |
+
bnb_config = BitsAndBytesConfig(
|
| 59 |
+
load_in_4bit=True,
|
| 60 |
+
bnb_4bit_use_double_quant=True,
|
| 61 |
+
bnb_4bit_quant_type="nf4",
|
| 62 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
base_model = AutoModelForVision2Seq.from_pretrained(
|
| 66 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
| 67 |
+
quantization_config=bnb_config,
|
| 68 |
+
device_map="auto",
|
| 69 |
+
trust_remote_code=True
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
model = PeftModel.from_pretrained(base_model, "ikellllllll/vqa-base-model")
|
| 73 |
+
processor = AutoProcessor.from_pretrained(
|
| 74 |
+
"Qwen/Qwen2.5-VL-3B-Instruct",
|
| 75 |
+
min_pixels=512*512,
|
| 76 |
+
max_pixels=512*512,
|
| 77 |
+
trust_remote_code=True
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# IMPORTANT: Set left-padding for decoder-only models
|
| 81 |
+
processor.tokenizer.padding_side = 'left'
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
## Inference Settings
|
| 85 |
+
|
| 86 |
+
- **Image Resolution:** 512×512px (higher resolution recommended)
|
| 87 |
+
- **Batch Size:** 32 (for A100 40GB)
|
| 88 |
+
- **Padding:** Left-padding (critical for decoder-only models!)
|
| 89 |
+
|
| 90 |
+
## Dataset
|
| 91 |
+
|
| 92 |
+
- **Training:** 604 VQA samples
|
| 93 |
+
- **Validation:** 389 VQA samples
|
| 94 |
+
- **Test:** 3,887 VQA samples
|
| 95 |
+
|
| 96 |
+
## Performance Notes
|
| 97 |
+
|
| 98 |
+
- 384px resolution: 88.69% validation accuracy
|
| 99 |
+
- 512px resolution: 89.72% validation accuracy (+1.03%)
|
| 100 |
+
- **Higher resolution significantly improves performance**
|
| 101 |
+
|
| 102 |
+
## Links
|
| 103 |
+
|
| 104 |
+
- **GitHub Repository:** [SSAFY_AI_competition](https://github.com/ikellllllll/SSAFY_AI_competition)
|
| 105 |
+
- **Related Models:**
|
| 106 |
+
- [vqa-improved-epoch1](https://huggingface.co/ikellllllll/vqa-improved-epoch1) (90.49%)
|
| 107 |
+
- [vqa-improved-epoch2](https://huggingface.co/ikellllllll/vqa-improved-epoch2) (90.23%)
|
| 108 |
+
|
| 109 |
+
## Citation
|
| 110 |
+
|
| 111 |
+
```bibtex
|
| 112 |
+
@misc{vqa-base-model,
|
| 113 |
+
author = {Team 203},
|
| 114 |
+
title = {VQA Base Model},
|
| 115 |
+
year = {2025},
|
| 116 |
+
publisher = {HuggingFace},
|
| 117 |
+
howpublished = {\url{https://huggingface.co/ikellllllll/vqa-base-model}}
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
## License
|
| 122 |
+
|
| 123 |
+
Apache 2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|