|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch LLaDA2MoE model.""" |
|
|
|
|
|
import math |
|
|
from typing import List, Callable, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.modeling_attn_mask_utils import ( |
|
|
_prepare_4d_causal_attention_mask, |
|
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
|
) |
|
|
from transformers.modeling_outputs import ( |
|
|
MoeModelOutputWithPast, |
|
|
MoeCausalLMOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.pytorch_utils import ( |
|
|
ALL_LAYERNORM_LAYERS, |
|
|
is_torch_greater_or_equal_than_1_13, |
|
|
) |
|
|
from transformers.utils import ( |
|
|
TransformersKwargs, |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
from transformers.utils.import_utils import is_torch_fx_available |
|
|
from .configuration_llada2_moe import LLaDA2MoeConfig |
|
|
from transformers.generation.utils import GenerationMixin |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_torch_fx_available(): |
|
|
if not is_torch_greater_or_equal_than_1_13: |
|
|
import torch.fx |
|
|
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "LLaDA2MoeConfig" |
|
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
|
cu_seqlens = F.pad( |
|
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) |
|
|
) |
|
|
return ( |
|
|
indices, |
|
|
cu_seqlens, |
|
|
max_seqlen_in_batch, |
|
|
) |
|
|
|
|
|
|
|
|
class LLaDA2MoeRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
LLaDA2MoeRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(LLaDA2MoeRMSNorm) |
|
|
|
|
|
|
|
|
class LLaDA2MoeRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: LLaDA2MoeConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get( |
|
|
"rope_type", config.rope_scaling.get("type") |
|
|
) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = ( |
|
|
self.inv_freq[None, :, None] |
|
|
.float() |
|
|
.expand(position_ids.shape[0], -1, 1) |
|
|
.to(x.device) |
|
|
) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = ( |
|
|
x.device.type |
|
|
if isinstance(x.device.type, str) and x.device.type != "mps" |
|
|
else "cpu" |
|
|
) |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = ( |
|
|
inv_freq_expanded.float() @ position_ids_expanded.float() |
|
|
).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`): |
|
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
|
used to pass offsetted position ids when working with a KV-cache. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
|
|
|
|
|
rotary_dim = cos.shape[-1] |
|
|
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] |
|
|
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] |
|
|
|
|
|
|
|
|
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin) |
|
|
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin) |
|
|
|
|
|
|
|
|
q_embed = torch.cat([q_embed, q_pass], dim=-1) |
|
|
k_embed = torch.cat([k_embed, k_pass], dim=-1) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class LLaDA2MoeMLP(nn.Module): |
|
|
def __init__(self, config: LLaDA2MoeConfig, intermediate_size: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
|
class LLaDA2MoeGate(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.top_k = config.num_experts_per_tok |
|
|
self.num_experts = config.num_experts |
|
|
|
|
|
self.n_group = config.n_group |
|
|
self.topk_group = config.topk_group |
|
|
|
|
|
|
|
|
self.gating_dim = config.hidden_size |
|
|
self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim))) |
|
|
self.routed_scaling_factor = config.routed_scaling_factor |
|
|
|
|
|
self.register_buffer("expert_bias", torch.zeros(self.num_experts)) |
|
|
self.reset_parameters() |
|
|
|
|
|
def reset_parameters(self) -> None: |
|
|
import torch.nn.init as init |
|
|
|
|
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
|
|
def group_limited_topk( |
|
|
self, |
|
|
scores: torch.Tensor, |
|
|
): |
|
|
num_tokens, _ = scores.size() |
|
|
|
|
|
group_scores = ( |
|
|
scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1) |
|
|
) |
|
|
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] |
|
|
group_mask = torch.zeros_like(group_scores) |
|
|
group_mask.scatter_(1, group_idx, 1) |
|
|
|
|
|
|
|
|
score_mask = ( |
|
|
group_mask.unsqueeze(-1) |
|
|
.expand(num_tokens, self.n_group, self.num_experts // self.n_group) |
|
|
.reshape(num_tokens, -1) |
|
|
) |
|
|
|
|
|
masked_scores = scores.masked_fill(~score_mask.bool(), float("-inf")) |
|
|
probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1) |
|
|
|
|
|
return probs, top_indices |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) |
|
|
logits = F.linear( |
|
|
hidden_states.type(torch.float32), self.weight.type(torch.float32) |
|
|
) |
|
|
|
|
|
scores = torch.sigmoid(logits.float()).type_as(logits) |
|
|
|
|
|
scores_for_routing = scores + self.expert_bias |
|
|
_, topk_idx = self.group_limited_topk(scores_for_routing) |
|
|
|
|
|
scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits) |
|
|
|
|
|
topk_weight = ( |
|
|
scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) |
|
|
if self.top_k > 1 |
|
|
else scores |
|
|
) |
|
|
topk_weight = topk_weight * self.routed_scaling_factor |
|
|
|
|
|
return topk_idx, topk_weight, logits |
|
|
|
|
|
|
|
|
class LLaDA2MoeSparseMoeBlock(nn.Module): |
|
|
""" |
|
|
A mixed expert module containing shared experts. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: LLaDA2MoeConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
self._setup_experts() |
|
|
self.gate = LLaDA2MoeGate(config) |
|
|
if config.num_shared_experts is not None: |
|
|
self.shared_experts = LLaDA2MoeMLP( |
|
|
config=config, |
|
|
intermediate_size=config.moe_intermediate_size |
|
|
* config.num_shared_experts, |
|
|
) |
|
|
|
|
|
def _setup_experts(self): |
|
|
self.experts = nn.ModuleList( |
|
|
[ |
|
|
LLaDA2MoeMLP( |
|
|
config=self.config, |
|
|
intermediate_size=self.config.moe_intermediate_size, |
|
|
) |
|
|
for _ in range(self.config.num_experts) |
|
|
] |
|
|
) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
identity = hidden_states |
|
|
bsz, seq_len, h = hidden_states.shape |
|
|
topk_idx, topk_weight, router_logits = self.gate(hidden_states) |
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) |
|
|
flat_topk_idx = topk_idx.view(-1) |
|
|
if self.training: |
|
|
hidden_states = hidden_states.repeat_interleave( |
|
|
self.num_experts_per_tok, dim=0 |
|
|
) |
|
|
y = torch.empty_like(hidden_states) |
|
|
for i, expert in enumerate(self.experts): |
|
|
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) |
|
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) |
|
|
y = y.to(hidden_states.dtype).view(bsz, seq_len, h) |
|
|
else: |
|
|
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view( |
|
|
bsz, seq_len, h |
|
|
) |
|
|
if self.config.num_shared_experts is not None: |
|
|
y = y + self.shared_experts(identity) |
|
|
return y, ( |
|
|
router_logits.view(bsz, seq_len, -1), |
|
|
topk_idx.view(bsz, seq_len, -1), |
|
|
) |
|
|
|
|
|
@torch.no_grad() |
|
|
def moe_infer(self, x, topk_ids, topk_weight): |
|
|
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) |
|
|
cnts.scatter_(1, topk_ids, 1) |
|
|
tokens_per_expert = cnts.sum(dim=0) |
|
|
idxs = topk_ids.view(-1).argsort() |
|
|
sorted_tokens = x[idxs // topk_ids.shape[1]] |
|
|
tokens_per_expert = tokens_per_expert.cpu().numpy() |
|
|
outputs = [] |
|
|
start_idx = 0 |
|
|
for i, num_tokens_tensor in enumerate(tokens_per_expert): |
|
|
num_tokens = num_tokens_tensor.item() |
|
|
if num_tokens == 0: |
|
|
continue |
|
|
end_idx = start_idx + num_tokens |
|
|
expert = self.experts[i] |
|
|
tokens_for_this_expert = sorted_tokens[start_idx:end_idx] |
|
|
expert_out = expert(tokens_for_this_expert) |
|
|
outputs.append(expert_out.to(x.device)) |
|
|
start_idx = end_idx |
|
|
|
|
|
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) |
|
|
new_x = torch.empty_like(outs) |
|
|
new_x[idxs] = outs |
|
|
final_out = ( |
|
|
new_x.view(*topk_ids.shape, -1) |
|
|
.type(topk_weight.dtype) |
|
|
.mul_(topk_weight.unsqueeze(dim=-1)) |
|
|
.sum(dim=1) |
|
|
.type(new_x.dtype) |
|
|
) |
|
|
return final_out |
|
|
|
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
|
) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = ( |
|
|
torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
) |
|
|
if attention_mask is not None: |
|
|
attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( |
|
|
query.dtype |
|
|
) |
|
|
attn_weights = nn.functional.dropout( |
|
|
attn_weights, p=dropout, training=module.training |
|
|
) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
|
|
|
class LLaDA2MoeAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: LLaDA2MoeConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
if layer_idx is None: |
|
|
logger.warning_once( |
|
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
|
"when creating this class." |
|
|
) |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = config.head_dim or self.hidden_size // self.num_heads |
|
|
partial_rotary_factor = ( |
|
|
config.partial_rotary_factor |
|
|
if hasattr(config, "partial_rotary_factor") |
|
|
else 1.0 |
|
|
) |
|
|
self.rope_dim = int(self.head_dim * partial_rotary_factor) |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.is_causal = False |
|
|
|
|
|
self.query_key_value = nn.Linear( |
|
|
self.hidden_size, |
|
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
|
bias=config.use_qkv_bias, |
|
|
) |
|
|
|
|
|
if self.config.use_qk_norm: |
|
|
self.query_layernorm = LLaDA2MoeRMSNorm( |
|
|
self.head_dim, eps=config.rms_norm_eps |
|
|
) |
|
|
self.key_layernorm = LLaDA2MoeRMSNorm( |
|
|
self.head_dim, eps=config.rms_norm_eps |
|
|
) |
|
|
self.dense = nn.Linear( |
|
|
self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias |
|
|
) |
|
|
self.sliding_window = getattr(config, "sliding_window", None) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
|
return ( |
|
|
tensor.view(bsz, seq_len, self.num_heads, self.head_dim) |
|
|
.transpose(1, 2) |
|
|
.contiguous() |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
position_embeddings: Optional[ |
|
|
Tuple[torch.Tensor, torch.Tensor] |
|
|
] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
qkv = self.query_key_value(hidden_states) |
|
|
qkv = qkv.view( |
|
|
bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim |
|
|
) |
|
|
|
|
|
query_states, key_states, value_states = qkv.split( |
|
|
[self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 |
|
|
) |
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
if self.config.use_qk_norm: |
|
|
query_states = self.query_layernorm(query_states) |
|
|
key_states = self.key_layernorm(key_states) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb( |
|
|
query_states, key_states, cos, sin |
|
|
) |
|
|
|
|
|
if past_key_value is not None: |
|
|
if self.layer_idx is None: |
|
|
raise ValueError( |
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
|
"with a layer index." |
|
|
) |
|
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
|
key_states, value_states = past_key_value.update( |
|
|
key_states, value_states, self.layer_idx, cache_kwargs |
|
|
) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[ |
|
|
self.config._attn_implementation |
|
|
] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.dense(attn_output) |
|
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
class LLaDA2MoeDecoderLayer(nn.Module): |
|
|
def __init__(self, config: LLaDA2MoeConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.attention = LLaDA2MoeAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = ( |
|
|
LLaDA2MoeSparseMoeBlock(config) |
|
|
if ( |
|
|
config.num_experts is not None |
|
|
and layer_idx >= config.first_k_dense_replace |
|
|
) |
|
|
else LLaDA2MoeMLP(config=config, intermediate_size=config.intermediate_size) |
|
|
) |
|
|
self.input_layernorm = LLaDA2MoeRMSNorm( |
|
|
config.hidden_size, eps=config.rms_norm_eps |
|
|
) |
|
|
self.post_attention_layernorm = LLaDA2MoeRMSNorm( |
|
|
config.hidden_size, eps=config.rms_norm_eps |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
output_router_logits: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
position_embeddings: Optional[ |
|
|
Tuple[torch.Tensor, torch.Tensor] |
|
|
] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[ |
|
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] |
|
|
]: |
|
|
""" |
|
|
Args: |
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
|
config.n_positions - 1]`. |
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): |
|
|
cached past key and value projection states |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether to return the attentions tensors of all attention layers. See `attentions` under |
|
|
returned tensors for more detail. |
|
|
output_router_logits (`bool`, *optional*): |
|
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, |
|
|
and should not be returned during inference. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
|
(see `past_key_values`). |
|
|
""" |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.attention( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
position_embeddings=position_embeddings, |
|
|
use_cache=use_cache, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
if isinstance(hidden_states, tuple): |
|
|
hidden_states, router_logits = hidden_states |
|
|
else: |
|
|
router_logits = None |
|
|
hidden_states = residual + hidden_states.to(residual.device) |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
|
|
|
if output_router_logits: |
|
|
outputs += (router_logits,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
LLADA2MOE_START_DOCSTRING = r""" |
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
|
etc.) |
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
|
and behavior. |
|
|
Parameters: |
|
|
config ([`LLaDA2MoeConfig`]): |
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
|
load the weights associated with the model, only the configuration. Check out the |
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.", |
|
|
LLADA2MOE_START_DOCSTRING, |
|
|
) |
|
|
class LLaDA2MoePreTrainedModel(PreTrainedModel): |
|
|
config_class = LLaDA2MoeConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["LLaDA2MoeDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = False |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
LLADA2MOE_INPUTS_DOCSTRING = r""" |
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
|
it. |
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
|
`past_key_values`). |
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
|
information on the default strategy. |
|
|
- 1 indicates the head is **not masked**, |
|
|
- 0 indicates the head is **masked**. |
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
|
config.n_positions - 1]`. |
|
|
[What are position IDs?](../glossary#position-ids) |
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
Two formats are allowed: |
|
|
- a [`~cache_utils.Cache`] instance; |
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
|
cache format. |
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
|
legacy cache format will be returned. |
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
|
of shape `(batch_size, sequence_length)`. |
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
|
model's internal embedding lookup matrix. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
|
`past_key_values`). |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
|
tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
|
more detail. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.", |
|
|
LLADA2MOE_START_DOCSTRING, |
|
|
) |
|
|
class LLaDA2MoeModel(LLaDA2MoePreTrainedModel): |
|
|
""" |
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDA2MoeDecoderLayer`] |
|
|
Args: |
|
|
config: LLaDA2MoeConfig |
|
|
""" |
|
|
|
|
|
def __init__(self, config: LLaDA2MoeConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.word_embeddings = nn.Embedding( |
|
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
|
) |
|
|
self.layers = nn.ModuleList( |
|
|
[ |
|
|
LLaDA2MoeDecoderLayer(config, layer_idx) |
|
|
for layer_idx in range(config.num_hidden_layers) |
|
|
] |
|
|
) |
|
|
self._use_sdpa = config._attn_implementation == "sdpa" |
|
|
self._use_flex_attention = config._attn_implementation == "flex_attention" |
|
|
self.norm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = LLaDA2MoeRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.word_embeddings |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.word_embeddings = value |
|
|
|
|
|
@add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
|
output_attentions = ( |
|
|
output_attentions |
|
|
if output_attentions is not None |
|
|
else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
output_router_logits = ( |
|
|
output_router_logits |
|
|
if output_router_logits is not None |
|
|
else self.config.output_router_logits |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
raise ValueError( |
|
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
|
) |
|
|
elif input_ids is not None: |
|
|
batch_size, seq_length = input_ids.shape[:2] |
|
|
elif inputs_embeds is not None: |
|
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
|
else: |
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
past_seen_tokens = ( |
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = torch.arange( |
|
|
past_seen_tokens, |
|
|
past_seen_tokens + inputs_embeds.shape[1], |
|
|
device=inputs_embeds.device, |
|
|
) |
|
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
|
|
if self._use_flex_attention: |
|
|
if attention_mask is not None and isinstance(attention_mask, torch.Tensor): |
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
|
attention_mask, |
|
|
(batch_size, seq_length), |
|
|
inputs_embeds, |
|
|
past_seen_tokens, |
|
|
) |
|
|
elif self._use_sdpa and not output_attentions: |
|
|
|
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
|
attention_mask, |
|
|
(batch_size, seq_length), |
|
|
inputs_embeds, |
|
|
past_seen_tokens, |
|
|
) |
|
|
else: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
|
attention_mask, |
|
|
(batch_size, seq_length), |
|
|
inputs_embeds, |
|
|
past_seen_tokens, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
all_router_logits = () if output_router_logits else None |
|
|
next_decoder_cache = None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
output_router_logits, |
|
|
use_cache, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
output_router_logits=output_router_logits, |
|
|
use_cache=use_cache, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if output_router_logits and layer_outputs[-1] is not None: |
|
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = None |
|
|
if use_cache: |
|
|
next_cache = next_decoder_cache |
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [ |
|
|
hidden_states, |
|
|
next_cache, |
|
|
all_hidden_states, |
|
|
all_self_attns, |
|
|
all_router_logits, |
|
|
] |
|
|
if v is not None |
|
|
) |
|
|
return MoeModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
router_logits=all_router_logits, |
|
|
) |
|
|
|
|
|
|
|
|
class LLaDA2MoeModelLM(LLaDA2MoePreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config: LLaDA2MoeConfig): |
|
|
super().__init__(config) |
|
|
self.model = LLaDA2MoeModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.word_embeddings |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.word_embeddings = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING) |
|
|
@replace_return_docstrings( |
|
|
output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC |
|
|
) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs, |
|
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
r""" |
|
|
Args: |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
Returns: |
|
|
Example: |
|
|
```python |
|
|
>>> from transformers import AutoTokenizer |
|
|
>>> model = LLaDA2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
output_attentions = ( |
|
|
output_attentions |
|
|
if output_attentions is not None |
|
|
else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
output_router_logits = ( |
|
|
output_router_logits |
|
|
if output_router_logits is not None |
|
|
else self.config.output_router_logits |
|
|
) |
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
output_router_logits=output_router_logits, |
|
|
return_dict=return_dict, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
loss = None |
|
|
aux_loss = None |
|
|
hidden_states = outputs[0] |
|
|
|
|
|
logits = self.lm_head(hidden_states) |
|
|
logits = logits.float() |
|
|
|
|
|
if labels is not None: |
|
|
|
|
|
shift_logits = logits |
|
|
shift_labels = labels |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
if output_router_logits: |
|
|
output = (aux_loss,) + output |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return MoeCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
aux_loss=aux_loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
router_logits=outputs.router_logits, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
token_type_ids=None, |
|
|
**kwargs, |
|
|
): |
|
|
if past_key_values is not None: |
|
|
if isinstance(past_key_values, Cache): |
|
|
cache_length = past_key_values.get_seq_length() |
|
|
past_length = past_key_values.seen_tokens |
|
|
max_cache_length = ( |
|
|
past_key_values.get_max_length() |
|
|
if hasattr(past_key_values, "get_max_length") |
|
|
else past_key_values.get_max_cache_shape() |
|
|
) |
|
|
else: |
|
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
|
attention_mask is not None |
|
|
and attention_mask.shape[1] > input_ids.shape[1] |
|
|
): |
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
|
max_cache_length is not None |
|
|
and attention_mask is not None |
|
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
|
): |
|
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
if past_key_values: |
|
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": kwargs.get("use_cache"), |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
@staticmethod |
|
|
def _reorder_cache(past_key_values, beam_idx): |
|
|
reordered_past = () |
|
|
for layer_past in past_key_values: |
|
|
reordered_past += ( |
|
|
tuple( |
|
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
|
for past_state in layer_past |
|
|
), |
|
|
) |
|
|
return reordered_past |
|
|
|
|
|
@staticmethod |
|
|
def _top_k_logits(logits, k): |
|
|
if k is None or k <= 0: |
|
|
return logits |
|
|
else: |
|
|
values, _ = torch.topk(logits, k) |
|
|
min_values = values[..., -1, None] |
|
|
return torch.where( |
|
|
logits < min_values, torch.full_like(logits, float("-inf")), logits |
|
|
) |
|
|
|
|
|
@staticmethod |
|
|
def _top_p_logits(logits, p): |
|
|
if p is None or p >= 1.0: |
|
|
return logits |
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
|
sorted_mask = cumulative_probs > p |
|
|
sorted_mask[..., 1:] = sorted_mask[..., :-1].clone() |
|
|
sorted_mask[..., 0] = False |
|
|
mask_indices = torch.scatter( |
|
|
torch.full_like(logits, False, dtype=torch.bool), |
|
|
-1, |
|
|
sorted_indices, |
|
|
sorted_mask, |
|
|
) |
|
|
return logits.masked_fill(mask_indices, float("-inf")) |
|
|
|
|
|
def _sample_with_temperature_topk_topp( |
|
|
self, logits, temperature=1.0, top_k=0, top_p=1.0 |
|
|
): |
|
|
orig_shape = logits.shape[:-1] |
|
|
vocab_size = logits.shape[-1] |
|
|
logits = logits.reshape(-1, vocab_size) |
|
|
if temperature > 0 and temperature != 1.0: |
|
|
logits = logits / temperature |
|
|
logits = self._top_k_logits(logits, top_k) |
|
|
logits = self._top_p_logits(logits, top_p) |
|
|
probs = F.softmax(logits, dim=-1) |
|
|
token = torch.multinomial(probs, num_samples=1) |
|
|
token_prob = torch.gather(probs, -1, token) |
|
|
return token.view(*orig_shape), token_prob.view(*orig_shape) |
|
|
|
|
|
@staticmethod |
|
|
def _get_num_transfer_tokens(block_length, steps): |
|
|
if steps == 0: |
|
|
return torch.tensor([], dtype=torch.int64) |
|
|
base = block_length // steps |
|
|
remainder = block_length % steps |
|
|
num_transfer_tokens = torch.full((steps,), base, dtype=torch.int64) |
|
|
num_transfer_tokens[:remainder] += 1 |
|
|
return num_transfer_tokens |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
inputs: Optional[torch.Tensor] = None, |
|
|
temperature: int = 0.0, |
|
|
block_length: int = 32, |
|
|
steps: int = 32, |
|
|
gen_length: int = 2048, |
|
|
top_p: Optional[int] = None, |
|
|
top_k: Optional[int] = None, |
|
|
eos_early_stop: bool = False, |
|
|
minimal_topk: int = 1, |
|
|
threshold: float = 0.95, |
|
|
eos_id: int = 156892, |
|
|
mask_id: int = 156895, |
|
|
): |
|
|
r""" |
|
|
Generates tokens using a block-wise, iterative refinement strategy. |
|
|
This method operates differently from standard autoregressive generation. It first creates a template of the |
|
|
full desired length, filled with a special `mask_id`. It then processes this template in segments (`blocks`) |
|
|
and iteratively "denoises" or "refines" the `mask_id` tokens into actual tokens over a series of `steps` for |
|
|
each block. A custom block-diagonal causal attention mask ensures that generation within a block can attend to |
|
|
all previous blocks but not future ones. |
|
|
<Tip warning={true}> |
|
|
This is a specialized generation method. The quality and speed of the output are highly dependent on the interplay |
|
|
between `block_length`, `steps`, and `threshold`. It aims to achieve faster generation through parallel |
|
|
decoding within blocks, which is a departure from the token-by-token generation of standard `.generate()` methods. |
|
|
</Tip> |
|
|
Parameters: |
|
|
inputs (`torch.Tensor`): |
|
|
The token sequence used as a prompt for the generation. |
|
|
temperature (`float`, *optional*, defaults to 0.0): |
|
|
The value used to module the next token probabilities. A value of 0.0 corresponds to greedy decoding. |
|
|
block_length (`int`, *optional*, defaults to 32): |
|
|
The size of each generation block. The model generates text in parallel within these blocks. This is a |
|
|
key parameter for controlling the granularity of the generation process. |
|
|
steps (`int`, *optional*, defaults to 32): |
|
|
The number of iterative refinement (or "denoising") steps to perform for each block. Within each block, |
|
|
the model will try to replace `mask_id` tokens with real tokens for this many iterations. |
|
|
gen_length (`int`, *optional*, defaults to 2048): |
|
|
The maximum number of tokens to generate, excluding the prompt. |
|
|
top_p (`float`, *optional*): |
|
|
If set to a float value between 0 and 1, only the most probable tokens with probabilities that add up to |
|
|
`top_p` or higher are kept for generation (nucleus sampling). |
|
|
top_k (`int`, *optional*): |
|
|
The number of highest probability vocabulary tokens to keep for top-k-filtering. |
|
|
eos_early_stop (`bool`, *optional*, defaults to `False`): |
|
|
If `True`, generation will stop as soon as a valid End-Of-Sequence token is generated and confirmed, |
|
|
even if `gen_length` has not been reached. |
|
|
minimal_topk (`int`, *optional*, defaults to 1): |
|
|
A parameter used to dynamically adjust the number of refinement `steps`. The effective number of steps |
|
|
is capped at `gen_length // minimal_topk`. |
|
|
threshold (`float`, *optional*, defaults to 0.95): |
|
|
The confidence probability threshold for accepting a sampled token. During each refinement step, a |
|
|
sampled token is only kept if its probability is above this threshold. If not enough tokens meet the |
|
|
threshold, the ones with the highest confidence are chosen. |
|
|
eos_id (`int`, *optional*, defaults to 156892): |
|
|
The token ID for the end-of-sequence token. Used for `eos_early_stop`. |
|
|
mask_id (`int`, *optional*, defaults to 156895): |
|
|
The token ID used as a placeholder for tokens that are yet to be generated. This is central to the |
|
|
iterative refinement algorithm. |
|
|
Return: |
|
|
`torch.Tensor`: A string containing the generated token IDs, starting |
|
|
after the prompt and stopping at the first `eos_id` or `gen_length`. |
|
|
""" |
|
|
steps = min(steps, gen_length // minimal_topk) |
|
|
input_ids = inputs.to(self.device) |
|
|
|
|
|
prompt_length = input_ids.shape[1] |
|
|
num_blocks = (prompt_length + gen_length + block_length - 1) // block_length |
|
|
total_length = num_blocks * block_length |
|
|
|
|
|
block_mask = torch.tril(torch.ones(num_blocks, num_blocks, device=self.device)) |
|
|
block_diffusion_attention_mask = ( |
|
|
( |
|
|
block_mask.repeat_interleave(block_length, dim=0) |
|
|
.repeat_interleave(block_length, dim=1) |
|
|
.unsqueeze(0) |
|
|
.unsqueeze(0) |
|
|
) |
|
|
.log() |
|
|
.to(torch.bfloat16) |
|
|
) |
|
|
|
|
|
position_ids = torch.arange(total_length, device=self.device).unsqueeze(0) |
|
|
x = torch.full((1, total_length), mask_id, dtype=torch.long, device=self.device) |
|
|
x[:, :prompt_length] = input_ids.clone() |
|
|
|
|
|
prompt_index_full = torch.zeros_like(x, dtype=torch.bool) |
|
|
prompt_index_full[:, :prompt_length] = True |
|
|
|
|
|
prefill_blocks = prompt_length // block_length |
|
|
|
|
|
denoising_steps_per_block = steps |
|
|
num_transfer_tokens_schedule = self._get_num_transfer_tokens( |
|
|
block_length, denoising_steps_per_block |
|
|
) |
|
|
for num_block in range(prefill_blocks, num_blocks): |
|
|
current_window_end = (num_block + 1) * block_length |
|
|
cur_x = x[:, :current_window_end] |
|
|
cur_attn_mask = block_diffusion_attention_mask[ |
|
|
:, :, :current_window_end, :current_window_end |
|
|
] |
|
|
cur_position_ids = position_ids[:, :current_window_end] |
|
|
|
|
|
for step in range(denoising_steps_per_block): |
|
|
active_block_mask = cur_x[:, -block_length:] == mask_id |
|
|
if active_block_mask.sum() == 0: |
|
|
break |
|
|
|
|
|
logits = self.forward( |
|
|
cur_x, |
|
|
attention_mask=cur_attn_mask, |
|
|
position_ids=cur_position_ids, |
|
|
).logits |
|
|
|
|
|
active_logits = logits[:, -block_length:, :] |
|
|
x0, x0_p = self._sample_with_temperature_topk_topp( |
|
|
active_logits, temperature=temperature, top_k=top_k, top_p=top_p |
|
|
) |
|
|
|
|
|
num_to_transfer = num_transfer_tokens_schedule[step].item() |
|
|
transfer_index = torch.zeros_like(x0, dtype=torch.bool) |
|
|
|
|
|
confidence = torch.where(active_block_mask, x0_p, -torch.inf) |
|
|
high_conf_mask = confidence[0] > threshold |
|
|
num_high_confidence = high_conf_mask.sum().item() |
|
|
|
|
|
if num_high_confidence >= num_to_transfer: |
|
|
transfer_index[0] = high_conf_mask |
|
|
else: |
|
|
_, idx = torch.topk( |
|
|
confidence[0], |
|
|
k=min(num_to_transfer, active_block_mask.sum().item()), |
|
|
) |
|
|
transfer_index[0, idx] = True |
|
|
|
|
|
if transfer_index.any(): |
|
|
cur_x[:, -block_length:][transfer_index] = x0[transfer_index] |
|
|
if eos_early_stop and (x0[transfer_index] == eos_id).any(): |
|
|
eos_pos_in_x = (cur_x[0] == eos_id).nonzero(as_tuple=True) |
|
|
if len(eos_pos_in_x[0]) > 0: |
|
|
eos_pos = eos_pos_in_x[0][0].item() |
|
|
if (cur_x[0, prompt_length:eos_pos] != mask_id).all(): |
|
|
final_x = x[:, :total_length][:, : eos_pos + 1] |
|
|
return final_x |
|
|
|
|
|
x[:, :current_window_end] = cur_x |
|
|
if ( |
|
|
eos_id is not None |
|
|
and (x[0, prompt_length:current_window_end] == eos_id).any() |
|
|
): |
|
|
break |
|
|
|
|
|
generated_answer = x[:, : prompt_length + gen_length] |
|
|
|
|
|
mask_positions = (generated_answer[0][input_ids.shape[1] :] == eos_id).nonzero( |
|
|
as_tuple=True |
|
|
)[0] |
|
|
if len(mask_positions) > 0: |
|
|
first_mask_position = mask_positions[0].item() |
|
|
else: |
|
|
first_mask_position = gen_length |
|
|
return generated_answer[ |
|
|
:, input_ids.shape[1] : input_ids.shape[1] + first_mask_position + 1 |
|
|
] |
|
|
|
|
|
|
|
|
|