File size: 1,311 Bytes
4631718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
base_model: AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx
datasets: DigitalLearningGmbH/MATH-lighteval
library_name: transformers
model_name: DeepSeek-R1-Distill-Qwen-7B-GRPO_Math
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
- mlx
- mlx-my-repo
- mlx
- mlx-my-repo
licence: license
---
# introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit
The Model [introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit](https://huggingface.co/introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit) was converted to MLX format from [AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx](https://huggingface.co/AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx) using mlx-lm version **0.28.3**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|