--- base_model: AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: DeepSeek-R1-Distill-Qwen-7B-GRPO_Math tags: - generated_from_trainer - open-r1 - trl - grpo - mlx - mlx-my-repo - mlx - mlx-my-repo licence: license --- # introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit The Model [introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit](https://huggingface.co/introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit) was converted to MLX format from [AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx](https://huggingface.co/AlejandroOlmedo/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx) using mlx-lm version **0.28.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("introvoyz041/DeepSeek-R1-Distill-Qwen-7B-GRPO_Math-8bit-mlx-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```