JulioContrerasH commited on
Commit
ec7e78e
·
verified ·
1 Parent(s): ab06a79

Upload: proba_deeplabv3.json

Browse files
Files changed (1) hide show
  1. single/proba_deeplabv3.json +239 -0
single/proba_deeplabv3.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "Feature",
3
+ "stac_version": "1.1.0",
4
+ "stac_extensions": [
5
+ "https://stac-extensions.github.io/mlm/v1.5.0/schema.json",
6
+ "https://stac-extensions.github.io/file/v2.1.0/schema.json"
7
+ ],
8
+ "id": "DEEPLABV3_CLOUDMASK_FT_2025-10-26",
9
+ "geometry": {
10
+ "type": "Polygon",
11
+ "coordinates": [
12
+ [
13
+ [
14
+ -180.0,
15
+ -90.0
16
+ ],
17
+ [
18
+ -180.0,
19
+ 90.0
20
+ ],
21
+ [
22
+ 180.0,
23
+ 90.0
24
+ ],
25
+ [
26
+ 180.0,
27
+ -90.0
28
+ ],
29
+ [
30
+ -180.0,
31
+ -90.0
32
+ ]
33
+ ]
34
+ ]
35
+ },
36
+ "bbox": [
37
+ -180,
38
+ -90,
39
+ 180,
40
+ 90
41
+ ],
42
+ "properties": {
43
+ "datetime": "2025-10-26T11:10:11Z",
44
+ "created": "2025-10-26T11:10:11Z",
45
+ "updated": "2025-11-18T11:44:34.341705Z",
46
+ "description": "DeepLabV3 architecture fine-tuned for cloud detection in VGT-1, VGT-2, and PROBA-V satellite imagery from the FDR4VGT harmonized dataset.",
47
+ "title": "DEEPLABV3 Cloud Detection Model - VGT1/VGT2/Proba-V (Fine-tuned)",
48
+ "mlm:name": "deeplabv3_fdr4vgt_cloudmask_ft",
49
+ "mlm:architecture": "DeepLabV3",
50
+ "mlm:tasks": [
51
+ "semantic-segmentation"
52
+ ],
53
+ "mlm:framework": "pytorch",
54
+ "mlm:framework_version": "2.5.1+cu121",
55
+ "mlm:accelerator": "cuda",
56
+ "mlm:accelerator_constrained": false,
57
+ "mlm:accelerator_summary": "NVIDIA GPU with CUDA support (compute capability >= 7.0)",
58
+ "mlm:accelerator_count": 1,
59
+ "mlm:memory_size": 83638230,
60
+ "mlm:batch_size_suggestion": 8,
61
+ "mlm:total_parameters": 12648225,
62
+ "mlm:pretrained": true,
63
+ "mlm:pretrained_source": "Global VGT-1/VGT-2/PROBA-V cloud detection model (100k+ training samples)",
64
+ "mlm:input": [
65
+ {
66
+ "name": "VGT_PROBA_TOC_reflectance",
67
+ "bands": [
68
+ "Blue (B0, ~450nm)",
69
+ "Red (B2, ~645nm)",
70
+ "Near-Infrared (B3, ~835nm)",
71
+ "SWIR (MIR, ~1665nm)"
72
+ ],
73
+ "input": {
74
+ "shape": [
75
+ -1,
76
+ 4,
77
+ 512,
78
+ 512
79
+ ],
80
+ "dim_order": [
81
+ "batch",
82
+ "channel",
83
+ "height",
84
+ "width"
85
+ ],
86
+ "data_type": "float32"
87
+ },
88
+ "norm": {
89
+ "type": "raw_toc_reflectance",
90
+ "range": [
91
+ 0,
92
+ 10000
93
+ ],
94
+ "description": "Raw Top-of-Canopy reflectance values scaled by 10000"
95
+ },
96
+ "pre_processing_function": null
97
+ }
98
+ ],
99
+ "mlm:output": [
100
+ {
101
+ "name": "cloud_probability",
102
+ "tasks": [
103
+ "semantic-segmentation"
104
+ ],
105
+ "result": {
106
+ "shape": [
107
+ -1,
108
+ 1,
109
+ 512,
110
+ 512
111
+ ],
112
+ "dim_order": [
113
+ "batch",
114
+ "channel",
115
+ "height",
116
+ "width"
117
+ ],
118
+ "data_type": "float32"
119
+ },
120
+ "classification:classes": [
121
+ {
122
+ "value": 0.0,
123
+ "name": "clear",
124
+ "description": "Clear sky (may contain cloud shadows)",
125
+ "color_hint": "00000000"
126
+ },
127
+ {
128
+ "value": 1.0,
129
+ "name": "cloud",
130
+ "description": "Cloud present",
131
+ "color_hint": "FFFF00"
132
+ }
133
+ ],
134
+ "post_processing_function": "Apply threshold to get binary mask. Standard threshold: 0.5. Recommended (balanced) threshold: 0.4.",
135
+ "standard_threshold": 0.5,
136
+ "recommended_threshold": 0.4343,
137
+ "value_range": [
138
+ 0.0,
139
+ 1.0
140
+ ],
141
+ "description": "Per-pixel probability of cloud presence. Built-in sigmoid activation. Values close to 1.0 indicate high confidence of cloud."
142
+ }
143
+ ],
144
+ "mlm:hyperparameters": {
145
+ "base_channels": null,
146
+ "encoder": "mobilenet_v2",
147
+ "encoder_weights": null,
148
+ "loss_function": "MaskedBCEWithLogitsLoss",
149
+ "loss_ignore_value": 255,
150
+ "optimizer": "Adam",
151
+ "learning_rate": 0.0001,
152
+ "weight_decay": 0.0,
153
+ "batch_size": 32,
154
+ "training_epochs": 17,
155
+ "max_epochs": 50,
156
+ "final_val_loss": 0.0721,
157
+ "scheduler": "ReduceLROnPlateau",
158
+ "scheduler_patience": 3,
159
+ "scheduler_factor": 0.5,
160
+ "early_stopping_patience": 10,
161
+ "gradient_clip_val": 1.0,
162
+ "precision": 16
163
+ },
164
+ "file:size": 55758820,
165
+ "custom:export_format": "torch.export.pt2",
166
+ "custom:has_sigmoid": true,
167
+ "custom:sigmoid_location": "built-in wrapper",
168
+ "custom:export_datetime": "2025-11-18T11:44:34.341705Z",
169
+ "custom:training_datetime": "2025-10-26T11:10:11Z",
170
+ "custom:training_stage": "fine-tuning",
171
+ "custom:base_model_source": "global_cloudmask",
172
+ "custom:project": "FDR4VGT",
173
+ "custom:project_url": "https://fdr4vgt.eu/",
174
+ "custom:sensors": [
175
+ "VGT-1",
176
+ "VGT-2",
177
+ "PROBA-V"
178
+ ],
179
+ "custom:sensor_notes": "Model applicable to SPOT-VGT1, SPOT-VGT2, and PROBA-V imagery",
180
+ "custom:spatial_resolution": "1km",
181
+ "custom:tile_size": 512,
182
+ "custom:recommended_overlap": 64,
183
+ "custom:applicable_start": "1998-03-01T00:00:00Z",
184
+ "custom:applicable_end": null,
185
+ "dependencies": [
186
+ "torch>=2.0.0",
187
+ "segmentation-models-pytorch>=0.3.0",
188
+ "pytorch-lightning>=2.0.0"
189
+ ]
190
+ },
191
+ "links": [
192
+ {
193
+ "rel": "about",
194
+ "href": "https://fdr4vgt.eu/",
195
+ "type": "text/html",
196
+ "title": "FDR4VGT Project - Harmonized VGT Data Record"
197
+ },
198
+ {
199
+ "rel": "license",
200
+ "href": "https://creativecommons.org/licenses/by/4.0/",
201
+ "type": "text/html",
202
+ "title": "CC-BY-4.0 License"
203
+ }
204
+ ],
205
+ "assets": {
206
+ "model": {
207
+ "href": "https://huggingface.co/isp-uv-es/FDR4VGT-CLOUD/resolve/main/single/proba_deeplabv3.pt2",
208
+ "type": "application/octet-stream; application=pytorch",
209
+ "title": "PyTorch model weights checkpoint",
210
+ "description": "The weights of the DEEPLABV3 model in torch.export .pt2 format with built-in sigmoid activation.",
211
+ "mlm:artifact_type": "torch.export.pt2",
212
+ "roles": [
213
+ "mlm:model",
214
+ "mlm:weights",
215
+ "data"
216
+ ]
217
+ },
218
+ "example_data": {
219
+ "href": "https://huggingface.co/isp-uv-es/FDR4VGT-CLOUD/resolve/main/single/example_data.safetensor",
220
+ "type": "application/octet-stream; application=safetensors",
221
+ "title": "Example VGT/PROBA-V image",
222
+ "description": "Example VGT/PROBA-V Top-of-Canopy reflectance image for model inference.",
223
+ "roles": [
224
+ "mlm:example_data",
225
+ "data"
226
+ ]
227
+ },
228
+ "load": {
229
+ "href": "https://huggingface.co/isp-uv-es/FDR4VGT-CLOUD/resolve/main/single/load.py",
230
+ "type": "application/x-python-code",
231
+ "title": "PyTorch Model Loader",
232
+ "description": "Python helper code to load the exported .pt2 model for inference.",
233
+ "roles": [
234
+ "code"
235
+ ]
236
+ }
237
+ },
238
+ "collection": "DEEPLABV3_FDR4VGT_CloudMask_FT"
239
+ }