SFT-Qwen2.5-Coder-3B_v1
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.0934 | 0.2909 | 20 | 0.9285 |
| 0.8825 | 0.5818 | 40 | 0.8725 |
| 0.8459 | 0.8727 | 60 | 0.8423 |
| 0.8573 | 1.16 | 80 | 0.8205 |
| 0.8109 | 1.4509 | 100 | 0.8079 |
| 0.7729 | 1.7418 | 120 | 0.7978 |
| 0.7089 | 2.0291 | 140 | 0.7842 |
| 0.7298 | 2.32 | 160 | 0.7870 |
| 0.6684 | 2.6109 | 180 | 0.7820 |
| 0.6122 | 2.9018 | 200 | 0.7801 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 223