SFT-Qwen2.5-Coder-3B_v1.1
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7507
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.9928 | 0.2857 | 20 | 0.9394 |
| 1.0199 | 0.5714 | 40 | 0.8743 |
| 0.838 | 0.8571 | 60 | 0.8337 |
| 0.835 | 1.1429 | 80 | 0.8078 |
| 0.7992 | 1.4286 | 100 | 0.7930 |
| 0.7439 | 1.7143 | 120 | 0.7782 |
| 0.696 | 2.0 | 140 | 0.7625 |
| 0.6318 | 2.2857 | 160 | 0.7599 |
| 0.6666 | 2.5714 | 180 | 0.7571 |
| 0.8047 | 2.8571 | 200 | 0.7507 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 206