Update README.md
Browse files
README.md
CHANGED
|
@@ -44,12 +44,44 @@ Validation Accuracy: ~96%
|
|
| 44 |
Example (simplified):
|
| 45 |
|
| 46 |
```python
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
Example (simplified):
|
| 45 |
|
| 46 |
```python
|
| 47 |
+
import streamlit as st
|
| 48 |
+
import tensorflow as tf
|
| 49 |
+
import numpy as np
|
| 50 |
+
from tensorflow.keras.preprocessing import image
|
| 51 |
+
from PIL import Image
|
| 52 |
+
|
| 53 |
+
# Load the trained model
|
| 54 |
+
@st.cache_resource
|
| 55 |
+
def load_model():
|
| 56 |
+
return tf.keras.models.load_model('models/brain_tumor_model.h5') # Update path if needed
|
| 57 |
+
|
| 58 |
+
model = load_model()
|
| 59 |
+
|
| 60 |
+
# Define class labels
|
| 61 |
+
class_names = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor']
|
| 62 |
+
|
| 63 |
+
# UI
|
| 64 |
+
st.title("🧠 Brain Tumor Detection from MRI")
|
| 65 |
+
st.write("Upload an MRI image to detect the type of brain tumor.")
|
| 66 |
+
|
| 67 |
+
# Upload image
|
| 68 |
+
uploaded_file = st.file_uploader("Choose an MRI image", type=["jpg", "jpeg", "png"])
|
| 69 |
+
|
| 70 |
+
if uploaded_file is not None:
|
| 71 |
+
# Show image
|
| 72 |
+
img = Image.open(uploaded_file)
|
| 73 |
+
st.image(img, caption="🖼️ Uploaded Image", use_container_width=True)
|
| 74 |
+
|
| 75 |
+
# Preprocessing
|
| 76 |
+
img = img.resize((224, 224)) # ✅ Make sure it matches your model's input size
|
| 77 |
+
img_array = image.img_to_array(img)
|
| 78 |
+
img_array = np.expand_dims(img_array, axis=0) / 255.0
|
| 79 |
+
|
| 80 |
+
# Prediction
|
| 81 |
+
predictions = model.predict(img_array)
|
| 82 |
+
confidence = float(np.max(predictions)) * 100
|
| 83 |
+
predicted_class = class_names[np.argmax(predictions)]
|
| 84 |
+
|
| 85 |
+
# Output
|
| 86 |
+
st.success(f"🎯 Predicted Tumor Type: **{predicted_class}**")
|
| 87 |
+
st.info(f"📊 Model Confidence: **{confidence:.2f}%**")
|