dataset: type: old_KITTI_360 data_path: /home/fb20user12/datasets/KITTI-360/ pose_path: /home/fb20user12/datasets/KITTI-360/data_poses split_path: datasets/kitti_360/splits/sscbench image_size: - 192 - 640 data_stereo: true data_fisheye: true data_fc: 2 fisheye_offset: - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 stereo_offset: - 0 is_preprocessed: true fisheye_rotation: -15 data_segmentation: true steps_per_epoch: 5164 model: arch: BTSNet use_code: true prediction_mode: default predict_dino: true dino_dims: 64 compensate_artifacts: true flip_augmentation: true encoder: type: dinov2 mode: downsample-prediction decoder_arch: dpt downsampler_arch: featup encoder_arch: vit-b version: v2 separate_gt_version: v2 encoder_freeze: false flip_avg_gt: false dim_reduction_arch: mlp num_ch_enc: - 64 - 64 - 128 - 256 intermediate_features: - 3 - 6 - 9 decoder_out_dim: 256 dino_pca_dim: 64 image_size: - 192 - 640 key_features: false code: num_freqs: 6 freq_factor: 1.5 include_input: true decoder_heads: - type: resnet name: normal_head freeze: false args: n_blocks: 0 d_hidden: 128 final_prediction_head: normal_head encoding_strategy: name: default args: {} eval_encoding_strategy: name: default args: null loss_renderer_strategy: name: kitti_360 args: null eval_loss_renderer_strategy: name: single_renderer args: shuffle_frames: false all_frames: true inv_z: true learn_empty: false code_mode: z n_frames_render: 4 sample_radius_3d: 0.5 renderer: n_coarse: 32 n_fine: 0 n_fine_depth: 0 depth_std: 1.0 sched: [] white_bkgd: false lindisp: true hard_alpha_cap: true eval_batch_size: 65536 render_mode: volumetric normalize_dino: true training: optimizer: type: adam args: lr: 0.0005 betas: - 0.9 - 0.999 eps: 1.0e-08 weight_decay: 0.0 amsgrad: false loss: - type: stego random_weight: 0.7681858818342623 knn_weight: 0.40262895957374445 self_weight: 0.2478902214214737 random_shift: 0.8167245534406465 knn_shift: 0.11229105513980008 self_shift: 0.5397087004143353 pointwise: false num_epochs: 1 epoch_length: 1000 resume_from: /home/fb20user12/code/bts-thesis-dino/out/paper-runs/kitti-dinov2/training_checkpoint_210000.pt continue: false checkpoint_every: 5000 log_every_iters: 250 ray_sampler: z_near: 3 z_far: 80 sample_mode: image validation: validation: metrics: - type: seg agg_type: unsup_seg args: n_classes: 19 gt_classes: 19 - type: stego agg_type: concat subset: type: random args: size: 32 save_best: metric: stego_cluster_weighted_miou update_model: true dry_run: false log_loss: false global_step: type: trainer iteration events: - type: ITERATION_COMPLETED args: every: 100 visualization_seg: metrics: {} subset: type: range args: start: 300 end: 301 visualize: input_imgs: null dino_gt: null batch_dino_gt: null batch_dino_artifacts: null segs_gt: null segs_pred: null batch_reconstructed_dino: null batch_dino_features_kmeans: null depth: null log_loss: false global_step: type: trainer iteration events: - type: STARTED args: null - type: ITERATION_COMPLETED args: every: 100 downstream: type: segmentation n_classes: 19 gt_classes: 19 input_dim: 768 code_dim: 64 knn_neighbors: 4 buffer_size: 256 patch_sample_size: 576 mode: 3d sweep: study_name: sweep_dinov2 storage_url: sqlite:////home/fb20user12/sweeps/optuna_study.db direction: maximize n_trials: 50 start_original_param: true hparams: - key: training.loss.0.random_weight method: suggest_float kwargs: name: random_weight low: 0.0 high: 1.0 - key: training.loss.0.knn_weight method: suggest_float kwargs: name: knn_weight low: 0.0 high: 1.0 - key: training.loss.0.self_weight method: suggest_float kwargs: name: self_weight low: 0.0 high: 1.0 - key: training.loss.0.random_shift method: suggest_float kwargs: name: random_shift low: 0.6 high: 1.0 - key: training.loss.0.knn_shift method: suggest_float kwargs: name: knn_shift low: 0.0 high: 0.4 - key: training.loss.0.self_shift method: suggest_float kwargs: name: self_shift low: 0.2 high: 0.6 training_type: downstream_training mode: nvs seed: 66 backend: null nproc_per_node: null with_amp: true name: training batch_size: 8 gradient_accum_factor: 1 num_workers: 8 output: path: out/sweep_dinov2/sweep_66 unique_id: sweep_66 original_path: out/sweep_dinov2/ original_unique_id: sweep eval_seed: 65 cuda device name: Tesla V100-SXM3-32GB