Upload folder using huggingface_hub
Browse files- config.json +41 -0
- generation_config.json +5 -0
- latest +1 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +203 -0
- scheduler.pt +3 -0
- special_tokens_map.json +29 -0
- tokenizer.json +0 -0
- tokenizer_config.json +133 -0
- trainer_state.json +1504 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "tiiuae/falcon-7b-instruct",
|
| 3 |
+
"activation": "gelu",
|
| 4 |
+
"alibi": false,
|
| 5 |
+
"apply_residual_connection_post_layernorm": false,
|
| 6 |
+
"architectures": [
|
| 7 |
+
"FalconForCausalLM"
|
| 8 |
+
],
|
| 9 |
+
"attention_dropout": 0.0,
|
| 10 |
+
"auto_map": {
|
| 11 |
+
"AutoConfig": "tiiuae/falcon-7b-instruct--configuration_falcon.FalconConfig",
|
| 12 |
+
"AutoModel": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconModel",
|
| 13 |
+
"AutoModelForCausalLM": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForCausalLM",
|
| 14 |
+
"AutoModelForQuestionAnswering": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForQuestionAnswering",
|
| 15 |
+
"AutoModelForSequenceClassification": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForSequenceClassification",
|
| 16 |
+
"AutoModelForTokenClassification": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForTokenClassification"
|
| 17 |
+
},
|
| 18 |
+
"bias": false,
|
| 19 |
+
"bos_token_id": 11,
|
| 20 |
+
"eos_token_id": 11,
|
| 21 |
+
"ffn_hidden_size": 18176,
|
| 22 |
+
"hidden_dropout": 0.0,
|
| 23 |
+
"hidden_size": 4544,
|
| 24 |
+
"initializer_range": 0.02,
|
| 25 |
+
"layer_norm_epsilon": 1e-05,
|
| 26 |
+
"max_position_embeddings": 2048,
|
| 27 |
+
"model_type": "falcon",
|
| 28 |
+
"multi_query": true,
|
| 29 |
+
"new_decoder_architecture": false,
|
| 30 |
+
"num_attention_heads": 71,
|
| 31 |
+
"num_hidden_layers": 32,
|
| 32 |
+
"num_kv_heads": 71,
|
| 33 |
+
"num_ln_in_parallel_attn": null,
|
| 34 |
+
"parallel_attn": true,
|
| 35 |
+
"rope_scaling": null,
|
| 36 |
+
"rope_theta": 10000.0,
|
| 37 |
+
"torch_dtype": "bfloat16",
|
| 38 |
+
"transformers_version": "4.45.1",
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"vocab_size": 65024
|
| 41 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 11,
|
| 4 |
+
"transformers_version": "4.45.1"
|
| 5 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1120
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de0e83888f8039a80ac1d6b1420b3e36f61c9e6b64100e399a1b83e416fa9927
|
| 3 |
+
size 4981285848
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a66aec99d0eb93df1b3f5a18c8d84af7d85b7ead64c1377ca9501c9b023cac3
|
| 3 |
+
size 4969690568
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b275bb9114e8e478bc19fbe5c210df3d4796ee70a8e1fbdbddad2a126ac720de
|
| 3 |
+
size 4483426544
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14434379520
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"transformer.h.0.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 8 |
+
"transformer.h.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"transformer.h.1.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 14 |
+
"transformer.h.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"transformer.h.1.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"transformer.h.10.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 20 |
+
"transformer.h.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 21 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 22 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"transformer.h.10.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"transformer.h.11.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 26 |
+
"transformer.h.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 27 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 28 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 29 |
+
"transformer.h.11.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 30 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 31 |
+
"transformer.h.12.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 32 |
+
"transformer.h.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 33 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 34 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 35 |
+
"transformer.h.12.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"transformer.h.13.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 38 |
+
"transformer.h.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 41 |
+
"transformer.h.13.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 42 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 43 |
+
"transformer.h.14.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 44 |
+
"transformer.h.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"transformer.h.14.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"transformer.h.15.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 50 |
+
"transformer.h.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"transformer.h.15.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"transformer.h.16.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 56 |
+
"transformer.h.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"transformer.h.16.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"transformer.h.17.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 62 |
+
"transformer.h.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"transformer.h.17.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"transformer.h.18.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 68 |
+
"transformer.h.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"transformer.h.18.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"transformer.h.19.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 74 |
+
"transformer.h.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"transformer.h.19.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"transformer.h.2.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 80 |
+
"transformer.h.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 81 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 82 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 83 |
+
"transformer.h.2.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 84 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 85 |
+
"transformer.h.20.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 86 |
+
"transformer.h.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"transformer.h.20.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"transformer.h.21.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
| 92 |
+
"transformer.h.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"transformer.h.21.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"transformer.h.22.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 98 |
+
"transformer.h.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 99 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 100 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"transformer.h.22.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"transformer.h.23.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 104 |
+
"transformer.h.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 105 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 106 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 107 |
+
"transformer.h.23.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 108 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 109 |
+
"transformer.h.24.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 110 |
+
"transformer.h.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 111 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 112 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 113 |
+
"transformer.h.24.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 114 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 115 |
+
"transformer.h.25.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 116 |
+
"transformer.h.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 117 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 118 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 119 |
+
"transformer.h.25.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 120 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 121 |
+
"transformer.h.26.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 122 |
+
"transformer.h.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 123 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 124 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 125 |
+
"transformer.h.26.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 126 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 127 |
+
"transformer.h.27.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 128 |
+
"transformer.h.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 129 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 130 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 131 |
+
"transformer.h.27.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 132 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 133 |
+
"transformer.h.28.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 134 |
+
"transformer.h.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 135 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 136 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 137 |
+
"transformer.h.28.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 138 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 139 |
+
"transformer.h.29.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 140 |
+
"transformer.h.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 141 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 142 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 143 |
+
"transformer.h.29.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 144 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 145 |
+
"transformer.h.3.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 146 |
+
"transformer.h.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 147 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 148 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 149 |
+
"transformer.h.3.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 150 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 151 |
+
"transformer.h.30.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 152 |
+
"transformer.h.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 153 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 154 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 155 |
+
"transformer.h.30.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 156 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 157 |
+
"transformer.h.31.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 158 |
+
"transformer.h.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 159 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
| 160 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
| 161 |
+
"transformer.h.31.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
| 162 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
| 163 |
+
"transformer.h.4.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 164 |
+
"transformer.h.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 165 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 166 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 167 |
+
"transformer.h.4.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 168 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 169 |
+
"transformer.h.5.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 170 |
+
"transformer.h.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 171 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 172 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 173 |
+
"transformer.h.5.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 174 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 175 |
+
"transformer.h.6.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 176 |
+
"transformer.h.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 177 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 178 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 179 |
+
"transformer.h.6.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 180 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 181 |
+
"transformer.h.7.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 182 |
+
"transformer.h.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 183 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 184 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 185 |
+
"transformer.h.7.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 186 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 187 |
+
"transformer.h.8.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 188 |
+
"transformer.h.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 189 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 190 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 191 |
+
"transformer.h.8.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 192 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 193 |
+
"transformer.h.9.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
| 194 |
+
"transformer.h.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 195 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
| 196 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
| 197 |
+
"transformer.h.9.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
| 198 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
| 199 |
+
"transformer.ln_f.bias": "model-00003-of-00003.safetensors",
|
| 200 |
+
"transformer.ln_f.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"transformer.word_embeddings.weight": "model-00001-of-00003.safetensors"
|
| 202 |
+
}
|
| 203 |
+
}
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99303e2b3da98b110e80eb6484d20dcd80a9c5851605ebb406920d3545e5ebd2
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
">>TITLE<<",
|
| 4 |
+
">>ABSTRACT<<",
|
| 5 |
+
">>INTRODUCTION<<",
|
| 6 |
+
">>SUMMARY<<",
|
| 7 |
+
">>COMMENT<<",
|
| 8 |
+
">>ANSWER<<",
|
| 9 |
+
">>QUESTION<<",
|
| 10 |
+
">>DOMAIN<<",
|
| 11 |
+
">>PREFIX<<",
|
| 12 |
+
">>SUFFIX<<",
|
| 13 |
+
">>MIDDLE<<"
|
| 14 |
+
],
|
| 15 |
+
"eos_token": {
|
| 16 |
+
"content": "<|endoftext|>",
|
| 17 |
+
"lstrip": false,
|
| 18 |
+
"normalized": false,
|
| 19 |
+
"rstrip": false,
|
| 20 |
+
"single_word": false
|
| 21 |
+
},
|
| 22 |
+
"pad_token": {
|
| 23 |
+
"content": "[PAD]",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false
|
| 28 |
+
}
|
| 29 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": ">>TITLE<<",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": ">>ABSTRACT<<",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": ">>INTRODUCTION<<",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": ">>SUMMARY<<",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"4": {
|
| 37 |
+
"content": ">>COMMENT<<",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"5": {
|
| 45 |
+
"content": ">>ANSWER<<",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"6": {
|
| 53 |
+
"content": ">>QUESTION<<",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"7": {
|
| 61 |
+
"content": ">>DOMAIN<<",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"8": {
|
| 69 |
+
"content": ">>PREFIX<<",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"9": {
|
| 77 |
+
"content": ">>SUFFIX<<",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"10": {
|
| 85 |
+
"content": ">>MIDDLE<<",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"11": {
|
| 93 |
+
"content": "<|endoftext|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"65024": {
|
| 101 |
+
"content": "[PAD]",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
}
|
| 108 |
+
},
|
| 109 |
+
"additional_special_tokens": [
|
| 110 |
+
">>TITLE<<",
|
| 111 |
+
">>ABSTRACT<<",
|
| 112 |
+
">>INTRODUCTION<<",
|
| 113 |
+
">>SUMMARY<<",
|
| 114 |
+
">>COMMENT<<",
|
| 115 |
+
">>ANSWER<<",
|
| 116 |
+
">>QUESTION<<",
|
| 117 |
+
">>DOMAIN<<",
|
| 118 |
+
">>PREFIX<<",
|
| 119 |
+
">>SUFFIX<<",
|
| 120 |
+
">>MIDDLE<<"
|
| 121 |
+
],
|
| 122 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 %}{{ system_message.strip() }}{% endif %}{% if message['role'] == 'user' %}{{ '\n\nUser: ' + message['content'].strip().replace('\r\n', '\n').replace('\n\n', '\n') }}{% elif message['role'] == 'assistant' %}{{ '\n\nAssistant: ' + message['content'].strip().replace('\r\n', '\n').replace('\n\n', '\n') }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '\n\nAssistant:' }}{% endif %}",
|
| 123 |
+
"clean_up_tokenization_spaces": false,
|
| 124 |
+
"eos_token": "<|endoftext|>",
|
| 125 |
+
"model_input_names": [
|
| 126 |
+
"input_ids",
|
| 127 |
+
"attention_mask"
|
| 128 |
+
],
|
| 129 |
+
"model_max_length": 2048,
|
| 130 |
+
"pad_token": "[PAD]",
|
| 131 |
+
"padding_side": "left",
|
| 132 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 133 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"episode": 17920,
|
| 5 |
+
"epoch": 0.24579258507413554,
|
| 6 |
+
"eval_steps": 200.0,
|
| 7 |
+
"global_step": 350,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"episode": 256,
|
| 14 |
+
"epoch": 0.003511322643916222,
|
| 15 |
+
"eps": 6,
|
| 16 |
+
"loss/policy_avg": -0.07090990990400314,
|
| 17 |
+
"loss/value_avg": 0.0,
|
| 18 |
+
"lr": 3e-06,
|
| 19 |
+
"objective/entropy": 49.42120361328125,
|
| 20 |
+
"objective/kl": 0.006465356796979904,
|
| 21 |
+
"objective/non_score_reward": -0.000646535714622587,
|
| 22 |
+
"objective/rlhf_reward": -1.1137903928756714,
|
| 23 |
+
"objective/scores": -1.109375,
|
| 24 |
+
"policy/approxkl_avg": 27.096786499023438,
|
| 25 |
+
"policy/clipfrac_avg": 0.732421875,
|
| 26 |
+
"policy/entropy_avg": 0.92181396484375,
|
| 27 |
+
"step": 5,
|
| 28 |
+
"val/clipfrac_avg": 0.0,
|
| 29 |
+
"val/num_eos_tokens": 12,
|
| 30 |
+
"val/ratio": 1.0399832725524902,
|
| 31 |
+
"val/ratio_var": 0.010045886039733887
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"episode": 512,
|
| 35 |
+
"epoch": 0.007022645287832444,
|
| 36 |
+
"eps": 6,
|
| 37 |
+
"loss/policy_avg": -0.06497187167406082,
|
| 38 |
+
"loss/value_avg": 0.0,
|
| 39 |
+
"lr": 2.9923273657289e-06,
|
| 40 |
+
"objective/entropy": 48.286014556884766,
|
| 41 |
+
"objective/kl": 0.8119473457336426,
|
| 42 |
+
"objective/non_score_reward": -0.08119472861289978,
|
| 43 |
+
"objective/rlhf_reward": -1.266162633895874,
|
| 44 |
+
"objective/scores": -1.1875,
|
| 45 |
+
"policy/approxkl_avg": 18.666072845458984,
|
| 46 |
+
"policy/clipfrac_avg": 0.7314453125,
|
| 47 |
+
"policy/entropy_avg": 0.912261962890625,
|
| 48 |
+
"step": 10,
|
| 49 |
+
"val/clipfrac_avg": 0.0,
|
| 50 |
+
"val/num_eos_tokens": 16,
|
| 51 |
+
"val/ratio": 1.020957112312317,
|
| 52 |
+
"val/ratio_var": 0.00411860179156065
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"episode": 768,
|
| 56 |
+
"epoch": 0.010533967931748666,
|
| 57 |
+
"eps": 6,
|
| 58 |
+
"loss/policy_avg": -0.0872286781668663,
|
| 59 |
+
"loss/value_avg": 0.0,
|
| 60 |
+
"lr": 2.9846547314578008e-06,
|
| 61 |
+
"objective/entropy": 49.34376525878906,
|
| 62 |
+
"objective/kl": 1.9591996669769287,
|
| 63 |
+
"objective/non_score_reward": -0.1959199756383896,
|
| 64 |
+
"objective/rlhf_reward": -1.2858657836914062,
|
| 65 |
+
"objective/scores": -1.09375,
|
| 66 |
+
"policy/approxkl_avg": 20.772502899169922,
|
| 67 |
+
"policy/clipfrac_avg": 0.73828125,
|
| 68 |
+
"policy/entropy_avg": 0.927978515625,
|
| 69 |
+
"step": 15,
|
| 70 |
+
"val/clipfrac_avg": 0.0,
|
| 71 |
+
"val/num_eos_tokens": 12,
|
| 72 |
+
"val/ratio": 1.0191609859466553,
|
| 73 |
+
"val/ratio_var": 0.00307083735242486
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"episode": 1024,
|
| 77 |
+
"epoch": 0.014045290575664887,
|
| 78 |
+
"eps": 6,
|
| 79 |
+
"loss/policy_avg": -0.07566041499376297,
|
| 80 |
+
"loss/value_avg": 0.0,
|
| 81 |
+
"lr": 2.9769820971867007e-06,
|
| 82 |
+
"objective/entropy": 53.13662338256836,
|
| 83 |
+
"objective/kl": 2.4811532497406006,
|
| 84 |
+
"objective/non_score_reward": -0.24811533093452454,
|
| 85 |
+
"objective/rlhf_reward": -1.2548893690109253,
|
| 86 |
+
"objective/scores": -1.0078125,
|
| 87 |
+
"policy/approxkl_avg": 20.665164947509766,
|
| 88 |
+
"policy/clipfrac_avg": 0.7314453125,
|
| 89 |
+
"policy/entropy_avg": 0.989776611328125,
|
| 90 |
+
"step": 20,
|
| 91 |
+
"val/clipfrac_avg": 0.0,
|
| 92 |
+
"val/num_eos_tokens": 11,
|
| 93 |
+
"val/ratio": 1.011010766029358,
|
| 94 |
+
"val/ratio_var": 0.004201602190732956
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"episode": 1280,
|
| 98 |
+
"epoch": 0.01755661321958111,
|
| 99 |
+
"eps": 6,
|
| 100 |
+
"loss/policy_avg": -0.08593496680259705,
|
| 101 |
+
"loss/value_avg": 0.0,
|
| 102 |
+
"lr": 2.9693094629156014e-06,
|
| 103 |
+
"objective/entropy": 53.72633743286133,
|
| 104 |
+
"objective/kl": 3.3111624717712402,
|
| 105 |
+
"objective/non_score_reward": -0.3311161994934082,
|
| 106 |
+
"objective/rlhf_reward": -1.339456558227539,
|
| 107 |
+
"objective/scores": -1.0078125,
|
| 108 |
+
"policy/approxkl_avg": 25.559288024902344,
|
| 109 |
+
"policy/clipfrac_avg": 0.7353515625,
|
| 110 |
+
"policy/entropy_avg": 0.997894287109375,
|
| 111 |
+
"step": 25,
|
| 112 |
+
"val/clipfrac_avg": 0.0,
|
| 113 |
+
"val/num_eos_tokens": 13,
|
| 114 |
+
"val/ratio": 1.0134021043777466,
|
| 115 |
+
"val/ratio_var": 0.0019979747012257576
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"episode": 1536,
|
| 119 |
+
"epoch": 0.021067935863497332,
|
| 120 |
+
"eps": 6,
|
| 121 |
+
"loss/policy_avg": -0.09734417498111725,
|
| 122 |
+
"loss/value_avg": 0.0,
|
| 123 |
+
"lr": 2.9616368286445014e-06,
|
| 124 |
+
"objective/entropy": 51.259735107421875,
|
| 125 |
+
"objective/kl": 5.089182376861572,
|
| 126 |
+
"objective/non_score_reward": -0.5089181661605835,
|
| 127 |
+
"objective/rlhf_reward": -1.2202520370483398,
|
| 128 |
+
"objective/scores": -0.7109375,
|
| 129 |
+
"policy/approxkl_avg": 29.841636657714844,
|
| 130 |
+
"policy/clipfrac_avg": 0.736328125,
|
| 131 |
+
"policy/entropy_avg": 0.960479736328125,
|
| 132 |
+
"step": 30,
|
| 133 |
+
"val/clipfrac_avg": 0.0,
|
| 134 |
+
"val/num_eos_tokens": 26,
|
| 135 |
+
"val/ratio": 1.0178756713867188,
|
| 136 |
+
"val/ratio_var": 0.009866585955023766
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"episode": 1792,
|
| 140 |
+
"epoch": 0.024579258507413555,
|
| 141 |
+
"eps": 6,
|
| 142 |
+
"loss/policy_avg": -0.06831618398427963,
|
| 143 |
+
"loss/value_avg": 0.0,
|
| 144 |
+
"lr": 2.9539641943734013e-06,
|
| 145 |
+
"objective/entropy": 40.643272399902344,
|
| 146 |
+
"objective/kl": 6.974010944366455,
|
| 147 |
+
"objective/non_score_reward": -0.6974011063575745,
|
| 148 |
+
"objective/rlhf_reward": -1.2684605121612549,
|
| 149 |
+
"objective/scores": -0.5703125,
|
| 150 |
+
"policy/approxkl_avg": 35.33942413330078,
|
| 151 |
+
"policy/clipfrac_avg": 0.6982421875,
|
| 152 |
+
"policy/entropy_avg": 0.7505035400390625,
|
| 153 |
+
"step": 35,
|
| 154 |
+
"val/clipfrac_avg": 0.0,
|
| 155 |
+
"val/num_eos_tokens": 16,
|
| 156 |
+
"val/ratio": 1.00449800491333,
|
| 157 |
+
"val/ratio_var": 0.0022142010275274515
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"episode": 2048,
|
| 161 |
+
"epoch": 0.028090581151329775,
|
| 162 |
+
"eps": 6,
|
| 163 |
+
"loss/policy_avg": -0.04068079590797424,
|
| 164 |
+
"loss/value_avg": 0.0,
|
| 165 |
+
"lr": 2.946291560102302e-06,
|
| 166 |
+
"objective/entropy": 23.142562866210938,
|
| 167 |
+
"objective/kl": 8.180486679077148,
|
| 168 |
+
"objective/non_score_reward": -0.8180487155914307,
|
| 169 |
+
"objective/rlhf_reward": -1.0729957818984985,
|
| 170 |
+
"objective/scores": -0.255859375,
|
| 171 |
+
"policy/approxkl_avg": 23.68307876586914,
|
| 172 |
+
"policy/clipfrac_avg": 0.5859375,
|
| 173 |
+
"policy/entropy_avg": 0.4361400604248047,
|
| 174 |
+
"step": 40,
|
| 175 |
+
"val/clipfrac_avg": 0.0,
|
| 176 |
+
"val/num_eos_tokens": 8,
|
| 177 |
+
"val/ratio": 1.0077030658721924,
|
| 178 |
+
"val/ratio_var": 0.0024766812566667795
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"episode": 2304,
|
| 182 |
+
"epoch": 0.031601903795246,
|
| 183 |
+
"eps": 6,
|
| 184 |
+
"loss/policy_avg": -0.07307010889053345,
|
| 185 |
+
"loss/value_avg": 0.0,
|
| 186 |
+
"lr": 2.938618925831202e-06,
|
| 187 |
+
"objective/entropy": 19.376842498779297,
|
| 188 |
+
"objective/kl": 8.770210266113281,
|
| 189 |
+
"objective/non_score_reward": -0.8770210146903992,
|
| 190 |
+
"objective/rlhf_reward": -1.0002652406692505,
|
| 191 |
+
"objective/scores": -0.12353515625,
|
| 192 |
+
"policy/approxkl_avg": 31.00873565673828,
|
| 193 |
+
"policy/clipfrac_avg": 0.5302734375,
|
| 194 |
+
"policy/entropy_avg": 0.33237457275390625,
|
| 195 |
+
"step": 45,
|
| 196 |
+
"val/clipfrac_avg": 0.0,
|
| 197 |
+
"val/num_eos_tokens": 20,
|
| 198 |
+
"val/ratio": 0.996111273765564,
|
| 199 |
+
"val/ratio_var": 0.001100091845728457
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"episode": 2560,
|
| 203 |
+
"epoch": 0.03511322643916222,
|
| 204 |
+
"eps": 6,
|
| 205 |
+
"loss/policy_avg": -0.04584116116166115,
|
| 206 |
+
"loss/value_avg": 0.0,
|
| 207 |
+
"lr": 2.9309462915601027e-06,
|
| 208 |
+
"objective/entropy": 11.984097480773926,
|
| 209 |
+
"objective/kl": 8.4966402053833,
|
| 210 |
+
"objective/non_score_reward": -0.849664032459259,
|
| 211 |
+
"objective/rlhf_reward": -0.8017911911010742,
|
| 212 |
+
"objective/scores": 0.0478515625,
|
| 213 |
+
"policy/approxkl_avg": 22.561037063598633,
|
| 214 |
+
"policy/clipfrac_avg": 0.451171875,
|
| 215 |
+
"policy/entropy_avg": 0.19393539428710938,
|
| 216 |
+
"step": 50,
|
| 217 |
+
"val/clipfrac_avg": 0.0,
|
| 218 |
+
"val/num_eos_tokens": 20,
|
| 219 |
+
"val/ratio": 0.9952375888824463,
|
| 220 |
+
"val/ratio_var": 0.000761833623982966
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"episode": 2816,
|
| 224 |
+
"epoch": 0.03862454908307844,
|
| 225 |
+
"eps": 5,
|
| 226 |
+
"loss/policy_avg": -0.029720915481448174,
|
| 227 |
+
"loss/value_avg": 0.0,
|
| 228 |
+
"lr": 2.9232736572890026e-06,
|
| 229 |
+
"objective/entropy": 4.9489898681640625,
|
| 230 |
+
"objective/kl": 8.733837127685547,
|
| 231 |
+
"objective/non_score_reward": -0.8733837604522705,
|
| 232 |
+
"objective/rlhf_reward": -0.7492713928222656,
|
| 233 |
+
"objective/scores": 0.1240234375,
|
| 234 |
+
"policy/approxkl_avg": 16.253189086914062,
|
| 235 |
+
"policy/clipfrac_avg": 0.341796875,
|
| 236 |
+
"policy/entropy_avg": 0.07728099822998047,
|
| 237 |
+
"step": 55,
|
| 238 |
+
"val/clipfrac_avg": 0.0,
|
| 239 |
+
"val/num_eos_tokens": 18,
|
| 240 |
+
"val/ratio": 0.9972053170204163,
|
| 241 |
+
"val/ratio_var": 0.00032430028659291565
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"episode": 3072,
|
| 245 |
+
"epoch": 0.042135871726994664,
|
| 246 |
+
"eps": 5,
|
| 247 |
+
"loss/policy_avg": -0.01298562902957201,
|
| 248 |
+
"loss/value_avg": 0.0,
|
| 249 |
+
"lr": 2.9156010230179026e-06,
|
| 250 |
+
"objective/entropy": 1.3101667165756226,
|
| 251 |
+
"objective/kl": 8.699792861938477,
|
| 252 |
+
"objective/non_score_reward": -0.8699792623519897,
|
| 253 |
+
"objective/rlhf_reward": -0.5752952098846436,
|
| 254 |
+
"objective/scores": 0.294921875,
|
| 255 |
+
"policy/approxkl_avg": 2.27925968170166,
|
| 256 |
+
"policy/clipfrac_avg": 0.236328125,
|
| 257 |
+
"policy/entropy_avg": 0.02513742446899414,
|
| 258 |
+
"step": 60,
|
| 259 |
+
"val/clipfrac_avg": 0.0,
|
| 260 |
+
"val/num_eos_tokens": 20,
|
| 261 |
+
"val/ratio": 1.0017118453979492,
|
| 262 |
+
"val/ratio_var": 0.00016639505338389426
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"episode": 3328,
|
| 266 |
+
"epoch": 0.04564719437091089,
|
| 267 |
+
"eps": 5,
|
| 268 |
+
"loss/policy_avg": -0.02618303708732128,
|
| 269 |
+
"loss/value_avg": 0.0,
|
| 270 |
+
"lr": 2.9079283887468033e-06,
|
| 271 |
+
"objective/entropy": 2.3685269355773926,
|
| 272 |
+
"objective/kl": 9.208517074584961,
|
| 273 |
+
"objective/non_score_reward": -0.9208516478538513,
|
| 274 |
+
"objective/rlhf_reward": -0.5182289481163025,
|
| 275 |
+
"objective/scores": 0.40234375,
|
| 276 |
+
"policy/approxkl_avg": 2.6189699172973633,
|
| 277 |
+
"policy/clipfrac_avg": 0.310546875,
|
| 278 |
+
"policy/entropy_avg": 0.04020071029663086,
|
| 279 |
+
"step": 65,
|
| 280 |
+
"val/clipfrac_avg": 0.0,
|
| 281 |
+
"val/num_eos_tokens": 20,
|
| 282 |
+
"val/ratio": 1.003983497619629,
|
| 283 |
+
"val/ratio_var": 0.0009448421187698841
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"episode": 3584,
|
| 287 |
+
"epoch": 0.04915851701482711,
|
| 288 |
+
"eps": 5,
|
| 289 |
+
"loss/policy_avg": -0.02327096462249756,
|
| 290 |
+
"loss/value_avg": 0.0,
|
| 291 |
+
"lr": 2.9002557544757032e-06,
|
| 292 |
+
"objective/entropy": 2.0416018962860107,
|
| 293 |
+
"objective/kl": 9.701976776123047,
|
| 294 |
+
"objective/non_score_reward": -0.9701976776123047,
|
| 295 |
+
"objective/rlhf_reward": -0.49486449360847473,
|
| 296 |
+
"objective/scores": 0.474609375,
|
| 297 |
+
"policy/approxkl_avg": 1.271956443786621,
|
| 298 |
+
"policy/clipfrac_avg": 0.2734375,
|
| 299 |
+
"policy/entropy_avg": 0.041253089904785156,
|
| 300 |
+
"step": 70,
|
| 301 |
+
"val/clipfrac_avg": 0.0,
|
| 302 |
+
"val/num_eos_tokens": 16,
|
| 303 |
+
"val/ratio": 1.0039558410644531,
|
| 304 |
+
"val/ratio_var": 0.00041477559716440737
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"episode": 3840,
|
| 308 |
+
"epoch": 0.052669839658743334,
|
| 309 |
+
"eps": 5,
|
| 310 |
+
"loss/policy_avg": -0.033096276223659515,
|
| 311 |
+
"loss/value_avg": 0.0,
|
| 312 |
+
"lr": 2.892583120204604e-06,
|
| 313 |
+
"objective/entropy": 2.7795495986938477,
|
| 314 |
+
"objective/kl": 10.028523445129395,
|
| 315 |
+
"objective/non_score_reward": -1.0028523206710815,
|
| 316 |
+
"objective/rlhf_reward": -0.46555712819099426,
|
| 317 |
+
"objective/scores": 0.5390625,
|
| 318 |
+
"policy/approxkl_avg": 3.055203676223755,
|
| 319 |
+
"policy/clipfrac_avg": 0.3427734375,
|
| 320 |
+
"policy/entropy_avg": 0.053270816802978516,
|
| 321 |
+
"step": 75,
|
| 322 |
+
"val/clipfrac_avg": 0.0,
|
| 323 |
+
"val/num_eos_tokens": 23,
|
| 324 |
+
"val/ratio": 1.0012407302856445,
|
| 325 |
+
"val/ratio_var": 0.00011274257121840492
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"episode": 4096,
|
| 329 |
+
"epoch": 0.05618116230265955,
|
| 330 |
+
"eps": 5,
|
| 331 |
+
"loss/policy_avg": -0.01961323618888855,
|
| 332 |
+
"loss/value_avg": 0.0,
|
| 333 |
+
"lr": 2.884910485933504e-06,
|
| 334 |
+
"objective/entropy": 2.5525641441345215,
|
| 335 |
+
"objective/kl": 10.111019134521484,
|
| 336 |
+
"objective/non_score_reward": -1.0111019611358643,
|
| 337 |
+
"objective/rlhf_reward": -0.510233461856842,
|
| 338 |
+
"objective/scores": 0.5,
|
| 339 |
+
"policy/approxkl_avg": 1.331697940826416,
|
| 340 |
+
"policy/clipfrac_avg": 0.2861328125,
|
| 341 |
+
"policy/entropy_avg": 0.048857688903808594,
|
| 342 |
+
"step": 80,
|
| 343 |
+
"val/clipfrac_avg": 0.0,
|
| 344 |
+
"val/num_eos_tokens": 25,
|
| 345 |
+
"val/ratio": 1.011049509048462,
|
| 346 |
+
"val/ratio_var": 0.004252108279615641
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"episode": 4352,
|
| 350 |
+
"epoch": 0.05969248494657577,
|
| 351 |
+
"eps": 5,
|
| 352 |
+
"loss/policy_avg": -0.009127877652645111,
|
| 353 |
+
"loss/value_avg": 0.0,
|
| 354 |
+
"lr": 2.877237851662404e-06,
|
| 355 |
+
"objective/entropy": 3.016789674758911,
|
| 356 |
+
"objective/kl": 11.257818222045898,
|
| 357 |
+
"objective/non_score_reward": -1.125781774520874,
|
| 358 |
+
"objective/rlhf_reward": -0.4276960492134094,
|
| 359 |
+
"objective/scores": 0.69921875,
|
| 360 |
+
"policy/approxkl_avg": 1.4772686958312988,
|
| 361 |
+
"policy/clipfrac_avg": 0.35546875,
|
| 362 |
+
"policy/entropy_avg": 0.053719520568847656,
|
| 363 |
+
"step": 85,
|
| 364 |
+
"val/clipfrac_avg": 0.0,
|
| 365 |
+
"val/num_eos_tokens": 6,
|
| 366 |
+
"val/ratio": 1.0042904615402222,
|
| 367 |
+
"val/ratio_var": 0.0008556774700991809
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"episode": 4608,
|
| 371 |
+
"epoch": 0.063203807590492,
|
| 372 |
+
"eps": 5,
|
| 373 |
+
"loss/policy_avg": -0.025049656629562378,
|
| 374 |
+
"loss/value_avg": 0.0,
|
| 375 |
+
"lr": 2.8695652173913046e-06,
|
| 376 |
+
"objective/entropy": 2.5907459259033203,
|
| 377 |
+
"objective/kl": 10.457273483276367,
|
| 378 |
+
"objective/non_score_reward": -1.0457274913787842,
|
| 379 |
+
"objective/rlhf_reward": -0.3816419839859009,
|
| 380 |
+
"objective/scores": 0.6640625,
|
| 381 |
+
"policy/approxkl_avg": 2.3460922241210938,
|
| 382 |
+
"policy/clipfrac_avg": 0.322265625,
|
| 383 |
+
"policy/entropy_avg": 0.04626178741455078,
|
| 384 |
+
"step": 90,
|
| 385 |
+
"val/clipfrac_avg": 0.0,
|
| 386 |
+
"val/num_eos_tokens": 11,
|
| 387 |
+
"val/ratio": 1.0003862380981445,
|
| 388 |
+
"val/ratio_var": 7.93520302977413e-05
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"episode": 4864,
|
| 392 |
+
"epoch": 0.06671513023440821,
|
| 393 |
+
"eps": 5,
|
| 394 |
+
"loss/policy_avg": -0.01828361675143242,
|
| 395 |
+
"loss/value_avg": 0.0,
|
| 396 |
+
"lr": 2.8618925831202045e-06,
|
| 397 |
+
"objective/entropy": 2.397810220718384,
|
| 398 |
+
"objective/kl": 10.732559204101562,
|
| 399 |
+
"objective/non_score_reward": -1.073256015777588,
|
| 400 |
+
"objective/rlhf_reward": -0.35966813564300537,
|
| 401 |
+
"objective/scores": 0.71484375,
|
| 402 |
+
"policy/approxkl_avg": 1.1093428134918213,
|
| 403 |
+
"policy/clipfrac_avg": 0.32421875,
|
| 404 |
+
"policy/entropy_avg": 0.041881561279296875,
|
| 405 |
+
"step": 95,
|
| 406 |
+
"val/clipfrac_avg": 0.0,
|
| 407 |
+
"val/num_eos_tokens": 15,
|
| 408 |
+
"val/ratio": 1.0054664611816406,
|
| 409 |
+
"val/ratio_var": 0.0017973663052543998
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"episode": 5120,
|
| 413 |
+
"epoch": 0.07022645287832444,
|
| 414 |
+
"eps": 5,
|
| 415 |
+
"loss/policy_avg": -0.04088423401117325,
|
| 416 |
+
"loss/value_avg": 0.0,
|
| 417 |
+
"lr": 2.8542199488491053e-06,
|
| 418 |
+
"objective/entropy": 2.343449592590332,
|
| 419 |
+
"objective/kl": 11.780994415283203,
|
| 420 |
+
"objective/non_score_reward": -1.1780993938446045,
|
| 421 |
+
"objective/rlhf_reward": -0.4628324806690216,
|
| 422 |
+
"objective/scores": 0.71484375,
|
| 423 |
+
"policy/approxkl_avg": 0.894420325756073,
|
| 424 |
+
"policy/clipfrac_avg": 0.46875,
|
| 425 |
+
"policy/entropy_avg": 0.04486083984375,
|
| 426 |
+
"step": 100,
|
| 427 |
+
"val/clipfrac_avg": 0.0,
|
| 428 |
+
"val/num_eos_tokens": 11,
|
| 429 |
+
"val/ratio": 1.0009559392929077,
|
| 430 |
+
"val/ratio_var": 4.804596756002866e-05
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"episode": 5376,
|
| 434 |
+
"epoch": 0.07373777552224066,
|
| 435 |
+
"eps": 5,
|
| 436 |
+
"loss/policy_avg": -0.020697183907032013,
|
| 437 |
+
"loss/value_avg": 0.0,
|
| 438 |
+
"lr": 2.846547314578005e-06,
|
| 439 |
+
"objective/entropy": 1.9023351669311523,
|
| 440 |
+
"objective/kl": 10.29288101196289,
|
| 441 |
+
"objective/non_score_reward": -1.0292882919311523,
|
| 442 |
+
"objective/rlhf_reward": -0.29047834873199463,
|
| 443 |
+
"objective/scores": 0.73828125,
|
| 444 |
+
"policy/approxkl_avg": 0.9143690466880798,
|
| 445 |
+
"policy/clipfrac_avg": 0.373046875,
|
| 446 |
+
"policy/entropy_avg": 0.028568267822265625,
|
| 447 |
+
"step": 105,
|
| 448 |
+
"val/clipfrac_avg": 0.0,
|
| 449 |
+
"val/num_eos_tokens": 10,
|
| 450 |
+
"val/ratio": 1.000715732574463,
|
| 451 |
+
"val/ratio_var": 4.201457340968773e-05
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"episode": 5632,
|
| 455 |
+
"epoch": 0.07724909816615688,
|
| 456 |
+
"eps": 5,
|
| 457 |
+
"loss/policy_avg": -0.012633640319108963,
|
| 458 |
+
"loss/value_avg": 0.0,
|
| 459 |
+
"lr": 2.8388746803069055e-06,
|
| 460 |
+
"objective/entropy": 1.3839142322540283,
|
| 461 |
+
"objective/kl": 10.57151985168457,
|
| 462 |
+
"objective/non_score_reward": -1.0571520328521729,
|
| 463 |
+
"objective/rlhf_reward": -0.2935946583747864,
|
| 464 |
+
"objective/scores": 0.765625,
|
| 465 |
+
"policy/approxkl_avg": 0.6525547504425049,
|
| 466 |
+
"policy/clipfrac_avg": 0.2646484375,
|
| 467 |
+
"policy/entropy_avg": 0.0345916748046875,
|
| 468 |
+
"step": 110,
|
| 469 |
+
"val/clipfrac_avg": 0.0,
|
| 470 |
+
"val/num_eos_tokens": 10,
|
| 471 |
+
"val/ratio": 0.9999199509620667,
|
| 472 |
+
"val/ratio_var": 2.6978697860613465e-05
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"episode": 5888,
|
| 476 |
+
"epoch": 0.0807604208100731,
|
| 477 |
+
"eps": 5,
|
| 478 |
+
"loss/policy_avg": -0.026668714359402657,
|
| 479 |
+
"loss/value_avg": 0.0,
|
| 480 |
+
"lr": 2.831202046035806e-06,
|
| 481 |
+
"objective/entropy": 2.17741322517395,
|
| 482 |
+
"objective/kl": 11.39688491821289,
|
| 483 |
+
"objective/non_score_reward": -1.139688491821289,
|
| 484 |
+
"objective/rlhf_reward": -0.3027456998825073,
|
| 485 |
+
"objective/scores": 0.8359375,
|
| 486 |
+
"policy/approxkl_avg": 8.829752922058105,
|
| 487 |
+
"policy/clipfrac_avg": 0.35546875,
|
| 488 |
+
"policy/entropy_avg": 0.034277915954589844,
|
| 489 |
+
"step": 115,
|
| 490 |
+
"val/clipfrac_avg": 0.0,
|
| 491 |
+
"val/num_eos_tokens": 8,
|
| 492 |
+
"val/ratio": 1.0012441873550415,
|
| 493 |
+
"val/ratio_var": 9.009366476675496e-05
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"episode": 6144,
|
| 497 |
+
"epoch": 0.08427174345398933,
|
| 498 |
+
"eps": 5,
|
| 499 |
+
"loss/policy_avg": -0.011602860875427723,
|
| 500 |
+
"loss/value_avg": 0.0,
|
| 501 |
+
"lr": 2.823529411764706e-06,
|
| 502 |
+
"objective/entropy": 1.418602466583252,
|
| 503 |
+
"objective/kl": 10.246469497680664,
|
| 504 |
+
"objective/non_score_reward": -1.0246469974517822,
|
| 505 |
+
"objective/rlhf_reward": -0.22599510848522186,
|
| 506 |
+
"objective/scores": 0.796875,
|
| 507 |
+
"policy/approxkl_avg": 0.31790149211883545,
|
| 508 |
+
"policy/clipfrac_avg": 0.2314453125,
|
| 509 |
+
"policy/entropy_avg": 0.028847694396972656,
|
| 510 |
+
"step": 120,
|
| 511 |
+
"val/clipfrac_avg": 0.0,
|
| 512 |
+
"val/num_eos_tokens": 9,
|
| 513 |
+
"val/ratio": 1.0009679794311523,
|
| 514 |
+
"val/ratio_var": 3.900106457876973e-05
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"episode": 6400,
|
| 518 |
+
"epoch": 0.08778306609790555,
|
| 519 |
+
"eps": 5,
|
| 520 |
+
"loss/policy_avg": -0.0157505851238966,
|
| 521 |
+
"loss/value_avg": 0.0,
|
| 522 |
+
"lr": 2.8158567774936066e-06,
|
| 523 |
+
"objective/entropy": 1.936393141746521,
|
| 524 |
+
"objective/kl": 10.550077438354492,
|
| 525 |
+
"objective/non_score_reward": -1.0550076961517334,
|
| 526 |
+
"objective/rlhf_reward": -0.252943217754364,
|
| 527 |
+
"objective/scores": 0.80078125,
|
| 528 |
+
"policy/approxkl_avg": 6.545133113861084,
|
| 529 |
+
"policy/clipfrac_avg": 0.341796875,
|
| 530 |
+
"policy/entropy_avg": 0.039971351623535156,
|
| 531 |
+
"step": 125,
|
| 532 |
+
"val/clipfrac_avg": 0.0,
|
| 533 |
+
"val/num_eos_tokens": 12,
|
| 534 |
+
"val/ratio": 1.0001187324523926,
|
| 535 |
+
"val/ratio_var": 0.00011527155584190041
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"episode": 6656,
|
| 539 |
+
"epoch": 0.09129438874182177,
|
| 540 |
+
"eps": 5,
|
| 541 |
+
"loss/policy_avg": -0.00908716581761837,
|
| 542 |
+
"loss/value_avg": 0.0,
|
| 543 |
+
"lr": 2.8081841432225065e-06,
|
| 544 |
+
"objective/entropy": 1.9167767763137817,
|
| 545 |
+
"objective/kl": 10.831771850585938,
|
| 546 |
+
"objective/non_score_reward": -1.0831772089004517,
|
| 547 |
+
"objective/rlhf_reward": -0.24270595610141754,
|
| 548 |
+
"objective/scores": 0.83984375,
|
| 549 |
+
"policy/approxkl_avg": 13.507976531982422,
|
| 550 |
+
"policy/clipfrac_avg": 0.25,
|
| 551 |
+
"policy/entropy_avg": 0.034499168395996094,
|
| 552 |
+
"step": 130,
|
| 553 |
+
"val/clipfrac_avg": 0.0,
|
| 554 |
+
"val/num_eos_tokens": 7,
|
| 555 |
+
"val/ratio": 1.0004911422729492,
|
| 556 |
+
"val/ratio_var": 0.00018595268193166703
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"episode": 6912,
|
| 560 |
+
"epoch": 0.094805711385738,
|
| 561 |
+
"eps": 5,
|
| 562 |
+
"loss/policy_avg": -0.017197387292981148,
|
| 563 |
+
"loss/value_avg": 0.0,
|
| 564 |
+
"lr": 2.800511508951407e-06,
|
| 565 |
+
"objective/entropy": 1.7237651348114014,
|
| 566 |
+
"objective/kl": 11.095592498779297,
|
| 567 |
+
"objective/non_score_reward": -1.1095592975616455,
|
| 568 |
+
"objective/rlhf_reward": -0.21057555079460144,
|
| 569 |
+
"objective/scores": 0.8984375,
|
| 570 |
+
"policy/approxkl_avg": 2.7560040950775146,
|
| 571 |
+
"policy/clipfrac_avg": 0.2841796875,
|
| 572 |
+
"policy/entropy_avg": 0.032952308654785156,
|
| 573 |
+
"step": 135,
|
| 574 |
+
"val/clipfrac_avg": 0.0,
|
| 575 |
+
"val/num_eos_tokens": 2,
|
| 576 |
+
"val/ratio": 0.9994020462036133,
|
| 577 |
+
"val/ratio_var": 3.074964843108319e-05
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"episode": 7168,
|
| 581 |
+
"epoch": 0.09831703402965422,
|
| 582 |
+
"eps": 5,
|
| 583 |
+
"loss/policy_avg": -0.012010859325528145,
|
| 584 |
+
"loss/value_avg": 0.0,
|
| 585 |
+
"lr": 2.792838874680307e-06,
|
| 586 |
+
"objective/entropy": 1.5862581729888916,
|
| 587 |
+
"objective/kl": 10.674396514892578,
|
| 588 |
+
"objective/non_score_reward": -1.0674396753311157,
|
| 589 |
+
"objective/rlhf_reward": -0.14433012902736664,
|
| 590 |
+
"objective/scores": 0.921875,
|
| 591 |
+
"policy/approxkl_avg": 1.1186727285385132,
|
| 592 |
+
"policy/clipfrac_avg": 0.2783203125,
|
| 593 |
+
"policy/entropy_avg": 0.0295562744140625,
|
| 594 |
+
"step": 140,
|
| 595 |
+
"val/clipfrac_avg": 0.0,
|
| 596 |
+
"val/num_eos_tokens": 13,
|
| 597 |
+
"val/ratio": 1.0007727146148682,
|
| 598 |
+
"val/ratio_var": 4.557183274300769e-05
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"episode": 7424,
|
| 602 |
+
"epoch": 0.10182835667357044,
|
| 603 |
+
"eps": 5,
|
| 604 |
+
"loss/policy_avg": -0.013728385791182518,
|
| 605 |
+
"loss/value_avg": 0.0,
|
| 606 |
+
"lr": 2.785166240409207e-06,
|
| 607 |
+
"objective/entropy": 1.5388869047164917,
|
| 608 |
+
"objective/kl": 10.359582901000977,
|
| 609 |
+
"objective/non_score_reward": -1.035958170890808,
|
| 610 |
+
"objective/rlhf_reward": -0.14511710405349731,
|
| 611 |
+
"objective/scores": 0.890625,
|
| 612 |
+
"policy/approxkl_avg": 0.5204602479934692,
|
| 613 |
+
"policy/clipfrac_avg": 0.283203125,
|
| 614 |
+
"policy/entropy_avg": 0.028924942016601562,
|
| 615 |
+
"step": 145,
|
| 616 |
+
"val/clipfrac_avg": 0.0,
|
| 617 |
+
"val/num_eos_tokens": 14,
|
| 618 |
+
"val/ratio": 1.056097149848938,
|
| 619 |
+
"val/ratio_var": 0.13372056186199188
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"episode": 7680,
|
| 623 |
+
"epoch": 0.10533967931748667,
|
| 624 |
+
"eps": 5,
|
| 625 |
+
"loss/policy_avg": -0.014945434406399727,
|
| 626 |
+
"loss/value_avg": 0.0,
|
| 627 |
+
"lr": 2.7774936061381074e-06,
|
| 628 |
+
"objective/entropy": 2.0769755840301514,
|
| 629 |
+
"objective/kl": 11.147063255310059,
|
| 630 |
+
"objective/non_score_reward": -1.11470627784729,
|
| 631 |
+
"objective/rlhf_reward": -0.08940108120441437,
|
| 632 |
+
"objective/scores": 1.0234375,
|
| 633 |
+
"policy/approxkl_avg": 0.5961493253707886,
|
| 634 |
+
"policy/clipfrac_avg": 0.3681640625,
|
| 635 |
+
"policy/entropy_avg": 0.037804603576660156,
|
| 636 |
+
"step": 150,
|
| 637 |
+
"val/clipfrac_avg": 0.0,
|
| 638 |
+
"val/num_eos_tokens": 13,
|
| 639 |
+
"val/ratio": 1.0033739805221558,
|
| 640 |
+
"val/ratio_var": 0.00030022990540601313
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"episode": 7936,
|
| 644 |
+
"epoch": 0.10885100196140288,
|
| 645 |
+
"eps": 5,
|
| 646 |
+
"loss/policy_avg": -0.02276831492781639,
|
| 647 |
+
"loss/value_avg": 0.0,
|
| 648 |
+
"lr": 2.7698209718670078e-06,
|
| 649 |
+
"objective/entropy": 2.1412830352783203,
|
| 650 |
+
"objective/kl": 11.697949409484863,
|
| 651 |
+
"objective/non_score_reward": -1.169795036315918,
|
| 652 |
+
"objective/rlhf_reward": -0.13582009077072144,
|
| 653 |
+
"objective/scores": 1.03125,
|
| 654 |
+
"policy/approxkl_avg": 0.7155288457870483,
|
| 655 |
+
"policy/clipfrac_avg": 0.3193359375,
|
| 656 |
+
"policy/entropy_avg": 0.037835121154785156,
|
| 657 |
+
"step": 155,
|
| 658 |
+
"val/clipfrac_avg": 0.0,
|
| 659 |
+
"val/num_eos_tokens": 13,
|
| 660 |
+
"val/ratio": 1.0014090538024902,
|
| 661 |
+
"val/ratio_var": 5.2470270020421594e-05
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"episode": 8192,
|
| 665 |
+
"epoch": 0.1123623246053191,
|
| 666 |
+
"eps": 5,
|
| 667 |
+
"loss/policy_avg": -0.013076605275273323,
|
| 668 |
+
"loss/value_avg": 0.0,
|
| 669 |
+
"lr": 2.762148337595908e-06,
|
| 670 |
+
"objective/entropy": 1.634714126586914,
|
| 671 |
+
"objective/kl": 11.629154205322266,
|
| 672 |
+
"objective/non_score_reward": -1.1629154682159424,
|
| 673 |
+
"objective/rlhf_reward": -0.28488799929618835,
|
| 674 |
+
"objective/scores": 0.87890625,
|
| 675 |
+
"policy/approxkl_avg": 0.4181188941001892,
|
| 676 |
+
"policy/clipfrac_avg": 0.3037109375,
|
| 677 |
+
"policy/entropy_avg": 0.029273509979248047,
|
| 678 |
+
"step": 160,
|
| 679 |
+
"val/clipfrac_avg": 0.0,
|
| 680 |
+
"val/num_eos_tokens": 15,
|
| 681 |
+
"val/ratio": 1.0008339881896973,
|
| 682 |
+
"val/ratio_var": 1.4662801731901709e-05
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"episode": 8448,
|
| 686 |
+
"epoch": 0.11587364724923532,
|
| 687 |
+
"eps": 5,
|
| 688 |
+
"loss/policy_avg": -0.01651182770729065,
|
| 689 |
+
"loss/value_avg": 0.0,
|
| 690 |
+
"lr": 2.7544757033248085e-06,
|
| 691 |
+
"objective/entropy": 1.9540742635726929,
|
| 692 |
+
"objective/kl": 11.4830322265625,
|
| 693 |
+
"objective/non_score_reward": -1.1483032703399658,
|
| 694 |
+
"objective/rlhf_reward": -0.05983233451843262,
|
| 695 |
+
"objective/scores": 1.0859375,
|
| 696 |
+
"policy/approxkl_avg": 18.791297912597656,
|
| 697 |
+
"policy/clipfrac_avg": 0.2880859375,
|
| 698 |
+
"policy/entropy_avg": 0.03601264953613281,
|
| 699 |
+
"step": 165,
|
| 700 |
+
"val/clipfrac_avg": 0.0,
|
| 701 |
+
"val/num_eos_tokens": 16,
|
| 702 |
+
"val/ratio": 1.0220942497253418,
|
| 703 |
+
"val/ratio_var": 0.02208283357322216
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"episode": 8704,
|
| 707 |
+
"epoch": 0.11938496989315155,
|
| 708 |
+
"eps": 5,
|
| 709 |
+
"loss/policy_avg": -0.013821810483932495,
|
| 710 |
+
"loss/value_avg": 0.0,
|
| 711 |
+
"lr": 2.7468030690537084e-06,
|
| 712 |
+
"objective/entropy": 1.6243339776992798,
|
| 713 |
+
"objective/kl": 11.435280799865723,
|
| 714 |
+
"objective/non_score_reward": -1.1435281038284302,
|
| 715 |
+
"objective/rlhf_reward": -0.12443088740110397,
|
| 716 |
+
"objective/scores": 1.015625,
|
| 717 |
+
"policy/approxkl_avg": 0.29013216495513916,
|
| 718 |
+
"policy/clipfrac_avg": 0.28125,
|
| 719 |
+
"policy/entropy_avg": 0.03498649597167969,
|
| 720 |
+
"step": 170,
|
| 721 |
+
"val/clipfrac_avg": 0.0,
|
| 722 |
+
"val/num_eos_tokens": 15,
|
| 723 |
+
"val/ratio": 1.0027971267700195,
|
| 724 |
+
"val/ratio_var": 0.0002298366161994636
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"episode": 8960,
|
| 728 |
+
"epoch": 0.12289629253706777,
|
| 729 |
+
"eps": 5,
|
| 730 |
+
"loss/policy_avg": -0.011003649793565273,
|
| 731 |
+
"loss/value_avg": 0.0,
|
| 732 |
+
"lr": 2.7391304347826087e-06,
|
| 733 |
+
"objective/entropy": 2.000375986099243,
|
| 734 |
+
"objective/kl": 11.78514575958252,
|
| 735 |
+
"objective/non_score_reward": -1.1785145998001099,
|
| 736 |
+
"objective/rlhf_reward": -0.2609584331512451,
|
| 737 |
+
"objective/scores": 0.91796875,
|
| 738 |
+
"policy/approxkl_avg": 0.8603074550628662,
|
| 739 |
+
"policy/clipfrac_avg": 0.2998046875,
|
| 740 |
+
"policy/entropy_avg": 0.034775733947753906,
|
| 741 |
+
"step": 175,
|
| 742 |
+
"val/clipfrac_avg": 0.0,
|
| 743 |
+
"val/num_eos_tokens": 19,
|
| 744 |
+
"val/ratio": 1.0012288093566895,
|
| 745 |
+
"val/ratio_var": 3.532394111971371e-05
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"episode": 9216,
|
| 749 |
+
"epoch": 0.126407615180984,
|
| 750 |
+
"eps": 5,
|
| 751 |
+
"loss/policy_avg": -0.010885423980653286,
|
| 752 |
+
"loss/value_avg": 0.0,
|
| 753 |
+
"lr": 2.731457800511509e-06,
|
| 754 |
+
"objective/entropy": 1.5240473747253418,
|
| 755 |
+
"objective/kl": 12.420597076416016,
|
| 756 |
+
"objective/non_score_reward": -1.2420598268508911,
|
| 757 |
+
"objective/rlhf_reward": -0.16641265153884888,
|
| 758 |
+
"objective/scores": 1.078125,
|
| 759 |
+
"policy/approxkl_avg": 0.46217110753059387,
|
| 760 |
+
"policy/clipfrac_avg": 0.2783203125,
|
| 761 |
+
"policy/entropy_avg": 0.029424667358398438,
|
| 762 |
+
"step": 180,
|
| 763 |
+
"val/clipfrac_avg": 0.0,
|
| 764 |
+
"val/num_eos_tokens": 20,
|
| 765 |
+
"val/ratio": 1.0007582902908325,
|
| 766 |
+
"val/ratio_var": 2.4759892767178826e-05
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"episode": 9472,
|
| 770 |
+
"epoch": 0.12991893782490022,
|
| 771 |
+
"eps": 5,
|
| 772 |
+
"loss/policy_avg": -0.01097183395177126,
|
| 773 |
+
"loss/value_avg": 0.0,
|
| 774 |
+
"lr": 2.7237851662404094e-06,
|
| 775 |
+
"objective/entropy": 1.6292238235473633,
|
| 776 |
+
"objective/kl": 12.73173713684082,
|
| 777 |
+
"objective/non_score_reward": -1.2731736898422241,
|
| 778 |
+
"objective/rlhf_reward": -0.10916168242692947,
|
| 779 |
+
"objective/scores": 1.1640625,
|
| 780 |
+
"policy/approxkl_avg": 0.5525862574577332,
|
| 781 |
+
"policy/clipfrac_avg": 0.310546875,
|
| 782 |
+
"policy/entropy_avg": 0.031815528869628906,
|
| 783 |
+
"step": 185,
|
| 784 |
+
"val/clipfrac_avg": 0.0,
|
| 785 |
+
"val/num_eos_tokens": 22,
|
| 786 |
+
"val/ratio": 1.0027148723602295,
|
| 787 |
+
"val/ratio_var": 0.00016600274830125272
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"episode": 9728,
|
| 791 |
+
"epoch": 0.13343026046881643,
|
| 792 |
+
"eps": 5,
|
| 793 |
+
"loss/policy_avg": -0.010572239756584167,
|
| 794 |
+
"loss/value_avg": 0.0,
|
| 795 |
+
"lr": 2.7161125319693097e-06,
|
| 796 |
+
"objective/entropy": 2.028618335723877,
|
| 797 |
+
"objective/kl": 12.439943313598633,
|
| 798 |
+
"objective/non_score_reward": -1.2439942359924316,
|
| 799 |
+
"objective/rlhf_reward": -0.06748821586370468,
|
| 800 |
+
"objective/scores": 1.171875,
|
| 801 |
+
"policy/approxkl_avg": 0.4930054843425751,
|
| 802 |
+
"policy/clipfrac_avg": 0.2841796875,
|
| 803 |
+
"policy/entropy_avg": 0.03688812255859375,
|
| 804 |
+
"step": 190,
|
| 805 |
+
"val/clipfrac_avg": 0.0,
|
| 806 |
+
"val/num_eos_tokens": 22,
|
| 807 |
+
"val/ratio": 1.001340627670288,
|
| 808 |
+
"val/ratio_var": 4.4035481550963596e-05
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"episode": 9984,
|
| 812 |
+
"epoch": 0.13694158311273266,
|
| 813 |
+
"eps": 5,
|
| 814 |
+
"loss/policy_avg": -0.019254155457019806,
|
| 815 |
+
"loss/value_avg": 0.0,
|
| 816 |
+
"lr": 2.7084398976982097e-06,
|
| 817 |
+
"objective/entropy": 2.295351266860962,
|
| 818 |
+
"objective/kl": 13.32223892211914,
|
| 819 |
+
"objective/non_score_reward": -1.332223892211914,
|
| 820 |
+
"objective/rlhf_reward": -0.1836824268102646,
|
| 821 |
+
"objective/scores": 1.1484375,
|
| 822 |
+
"policy/approxkl_avg": 3.1426281929016113,
|
| 823 |
+
"policy/clipfrac_avg": 0.3251953125,
|
| 824 |
+
"policy/entropy_avg": 0.03939247131347656,
|
| 825 |
+
"step": 195,
|
| 826 |
+
"val/clipfrac_avg": 0.0,
|
| 827 |
+
"val/num_eos_tokens": 17,
|
| 828 |
+
"val/ratio": 1.0032271146774292,
|
| 829 |
+
"val/ratio_var": 0.00019827872165478766
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"episode": 10240,
|
| 833 |
+
"epoch": 0.14045290575664887,
|
| 834 |
+
"eps": 5,
|
| 835 |
+
"loss/policy_avg": -0.018122296780347824,
|
| 836 |
+
"loss/value_avg": 0.0,
|
| 837 |
+
"lr": 2.70076726342711e-06,
|
| 838 |
+
"objective/entropy": 2.345075845718384,
|
| 839 |
+
"objective/kl": 12.536066055297852,
|
| 840 |
+
"objective/non_score_reward": -1.2536065578460693,
|
| 841 |
+
"objective/rlhf_reward": -0.056986674666404724,
|
| 842 |
+
"objective/scores": 1.1953125,
|
| 843 |
+
"policy/approxkl_avg": 27.5201473236084,
|
| 844 |
+
"policy/clipfrac_avg": 0.3046875,
|
| 845 |
+
"policy/entropy_avg": 0.04156017303466797,
|
| 846 |
+
"step": 200,
|
| 847 |
+
"val/clipfrac_avg": 0.0,
|
| 848 |
+
"val/num_eos_tokens": 20,
|
| 849 |
+
"val/ratio": 0.9993807077407837,
|
| 850 |
+
"val/ratio_var": 0.00011275127326371148
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"episode": 10496,
|
| 854 |
+
"epoch": 0.1439642284005651,
|
| 855 |
+
"eps": 5,
|
| 856 |
+
"loss/policy_avg": -0.019295353442430496,
|
| 857 |
+
"loss/value_avg": 0.0,
|
| 858 |
+
"lr": 2.6930946291560103e-06,
|
| 859 |
+
"objective/entropy": 2.091012477874756,
|
| 860 |
+
"objective/kl": 12.746508598327637,
|
| 861 |
+
"objective/non_score_reward": -1.2746508121490479,
|
| 862 |
+
"objective/rlhf_reward": -0.09065462648868561,
|
| 863 |
+
"objective/scores": 1.1875,
|
| 864 |
+
"policy/approxkl_avg": 0.5554059743881226,
|
| 865 |
+
"policy/clipfrac_avg": 0.2998046875,
|
| 866 |
+
"policy/entropy_avg": 0.03620719909667969,
|
| 867 |
+
"step": 205,
|
| 868 |
+
"val/clipfrac_avg": 0.0,
|
| 869 |
+
"val/num_eos_tokens": 17,
|
| 870 |
+
"val/ratio": 1.001387119293213,
|
| 871 |
+
"val/ratio_var": 3.4958156902575865e-05
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"episode": 10752,
|
| 875 |
+
"epoch": 0.14747555104448132,
|
| 876 |
+
"eps": 5,
|
| 877 |
+
"loss/policy_avg": -0.010203800164163113,
|
| 878 |
+
"loss/value_avg": 0.0,
|
| 879 |
+
"lr": 2.6854219948849107e-06,
|
| 880 |
+
"objective/entropy": 2.1808600425720215,
|
| 881 |
+
"objective/kl": 12.404802322387695,
|
| 882 |
+
"objective/non_score_reward": -1.2404803037643433,
|
| 883 |
+
"objective/rlhf_reward": -0.059675075113773346,
|
| 884 |
+
"objective/scores": 1.1796875,
|
| 885 |
+
"policy/approxkl_avg": 0.5876989364624023,
|
| 886 |
+
"policy/clipfrac_avg": 0.27734375,
|
| 887 |
+
"policy/entropy_avg": 0.041385650634765625,
|
| 888 |
+
"step": 210,
|
| 889 |
+
"val/clipfrac_avg": 0.0,
|
| 890 |
+
"val/num_eos_tokens": 14,
|
| 891 |
+
"val/ratio": 1.0035128593444824,
|
| 892 |
+
"val/ratio_var": 0.0004931605653837323
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"episode": 11008,
|
| 896 |
+
"epoch": 0.15098687368839755,
|
| 897 |
+
"eps": 5,
|
| 898 |
+
"loss/policy_avg": -0.018955286592245102,
|
| 899 |
+
"loss/value_avg": 0.0,
|
| 900 |
+
"lr": 2.677749360613811e-06,
|
| 901 |
+
"objective/entropy": 1.968322992324829,
|
| 902 |
+
"objective/kl": 13.322561264038086,
|
| 903 |
+
"objective/non_score_reward": -1.3322560787200928,
|
| 904 |
+
"objective/rlhf_reward": -0.0670965313911438,
|
| 905 |
+
"objective/scores": 1.265625,
|
| 906 |
+
"policy/approxkl_avg": 0.39782679080963135,
|
| 907 |
+
"policy/clipfrac_avg": 0.373046875,
|
| 908 |
+
"policy/entropy_avg": 0.03279399871826172,
|
| 909 |
+
"step": 215,
|
| 910 |
+
"val/clipfrac_avg": 0.0,
|
| 911 |
+
"val/num_eos_tokens": 14,
|
| 912 |
+
"val/ratio": 1.0017969608306885,
|
| 913 |
+
"val/ratio_var": 6.843745359219611e-05
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"episode": 11264,
|
| 917 |
+
"epoch": 0.15449819633231376,
|
| 918 |
+
"eps": 5,
|
| 919 |
+
"loss/policy_avg": -0.014947709627449512,
|
| 920 |
+
"loss/value_avg": 0.0,
|
| 921 |
+
"lr": 2.670076726342711e-06,
|
| 922 |
+
"objective/entropy": 1.7985560894012451,
|
| 923 |
+
"objective/kl": 12.856376647949219,
|
| 924 |
+
"objective/non_score_reward": -1.285637617111206,
|
| 925 |
+
"objective/rlhf_reward": -0.03251491114497185,
|
| 926 |
+
"objective/scores": 1.25,
|
| 927 |
+
"policy/approxkl_avg": 0.4516296982765198,
|
| 928 |
+
"policy/clipfrac_avg": 0.3671875,
|
| 929 |
+
"policy/entropy_avg": 0.031859397888183594,
|
| 930 |
+
"step": 220,
|
| 931 |
+
"val/clipfrac_avg": 0.0,
|
| 932 |
+
"val/num_eos_tokens": 13,
|
| 933 |
+
"val/ratio": 1.0009992122650146,
|
| 934 |
+
"val/ratio_var": 4.1194460209226236e-05
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"episode": 11520,
|
| 938 |
+
"epoch": 0.15800951897623,
|
| 939 |
+
"eps": 5,
|
| 940 |
+
"loss/policy_avg": -0.019819077104330063,
|
| 941 |
+
"loss/value_avg": 0.0,
|
| 942 |
+
"lr": 2.6624040920716113e-06,
|
| 943 |
+
"objective/entropy": 1.5284242630004883,
|
| 944 |
+
"objective/kl": 14.283391952514648,
|
| 945 |
+
"objective/non_score_reward": -1.4283392429351807,
|
| 946 |
+
"objective/rlhf_reward": -0.014965277165174484,
|
| 947 |
+
"objective/scores": 1.4140625,
|
| 948 |
+
"policy/approxkl_avg": 1.5518393516540527,
|
| 949 |
+
"policy/clipfrac_avg": 0.2744140625,
|
| 950 |
+
"policy/entropy_avg": 0.026048660278320312,
|
| 951 |
+
"step": 225,
|
| 952 |
+
"val/clipfrac_avg": 0.0,
|
| 953 |
+
"val/num_eos_tokens": 8,
|
| 954 |
+
"val/ratio": 1.0007925033569336,
|
| 955 |
+
"val/ratio_var": 3.721785105881281e-05
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"episode": 11776,
|
| 959 |
+
"epoch": 0.1615208416201462,
|
| 960 |
+
"eps": 5,
|
| 961 |
+
"loss/policy_avg": -0.015632648020982742,
|
| 962 |
+
"loss/value_avg": 0.0,
|
| 963 |
+
"lr": 2.6547314578005116e-06,
|
| 964 |
+
"objective/entropy": 1.5101430416107178,
|
| 965 |
+
"objective/kl": 13.435927391052246,
|
| 966 |
+
"objective/non_score_reward": -1.3435927629470825,
|
| 967 |
+
"objective/rlhf_reward": 0.017792798578739166,
|
| 968 |
+
"objective/scores": 1.359375,
|
| 969 |
+
"policy/approxkl_avg": 0.22922199964523315,
|
| 970 |
+
"policy/clipfrac_avg": 0.271484375,
|
| 971 |
+
"policy/entropy_avg": 0.025536060333251953,
|
| 972 |
+
"step": 230,
|
| 973 |
+
"val/clipfrac_avg": 0.0,
|
| 974 |
+
"val/num_eos_tokens": 11,
|
| 975 |
+
"val/ratio": 1.0355898141860962,
|
| 976 |
+
"val/ratio_var": 0.09009659290313721
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"episode": 12032,
|
| 980 |
+
"epoch": 0.16503216426406245,
|
| 981 |
+
"eps": 5,
|
| 982 |
+
"loss/policy_avg": -0.014460040256381035,
|
| 983 |
+
"loss/value_avg": 0.0,
|
| 984 |
+
"lr": 2.647058823529412e-06,
|
| 985 |
+
"objective/entropy": 1.412046194076538,
|
| 986 |
+
"objective/kl": 13.981653213500977,
|
| 987 |
+
"objective/non_score_reward": -1.3981653451919556,
|
| 988 |
+
"objective/rlhf_reward": -0.19434592127799988,
|
| 989 |
+
"objective/scores": 1.203125,
|
| 990 |
+
"policy/approxkl_avg": 0.48358476161956787,
|
| 991 |
+
"policy/clipfrac_avg": 0.287109375,
|
| 992 |
+
"policy/entropy_avg": 0.027116775512695312,
|
| 993 |
+
"step": 235,
|
| 994 |
+
"val/clipfrac_avg": 0.0,
|
| 995 |
+
"val/num_eos_tokens": 19,
|
| 996 |
+
"val/ratio": 1.0002431869506836,
|
| 997 |
+
"val/ratio_var": 1.317531587119447e-05
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"episode": 12288,
|
| 1001 |
+
"epoch": 0.16854348690797866,
|
| 1002 |
+
"eps": 5,
|
| 1003 |
+
"loss/policy_avg": -0.0144148338586092,
|
| 1004 |
+
"loss/value_avg": 0.0,
|
| 1005 |
+
"lr": 2.6393861892583123e-06,
|
| 1006 |
+
"objective/entropy": 1.5728825330734253,
|
| 1007 |
+
"objective/kl": 13.091099739074707,
|
| 1008 |
+
"objective/non_score_reward": -1.3091099262237549,
|
| 1009 |
+
"objective/rlhf_reward": -0.12438549101352692,
|
| 1010 |
+
"objective/scores": 1.1875,
|
| 1011 |
+
"policy/approxkl_avg": 0.5084937810897827,
|
| 1012 |
+
"policy/clipfrac_avg": 0.2587890625,
|
| 1013 |
+
"policy/entropy_avg": 0.028881072998046875,
|
| 1014 |
+
"step": 240,
|
| 1015 |
+
"val/clipfrac_avg": 0.0,
|
| 1016 |
+
"val/num_eos_tokens": 14,
|
| 1017 |
+
"val/ratio": 1.004534125328064,
|
| 1018 |
+
"val/ratio_var": 0.001037073670886457
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"episode": 12544,
|
| 1022 |
+
"epoch": 0.17205480955189487,
|
| 1023 |
+
"eps": 5,
|
| 1024 |
+
"loss/policy_avg": -0.02535724639892578,
|
| 1025 |
+
"loss/value_avg": 0.0,
|
| 1026 |
+
"lr": 2.6317135549872122e-06,
|
| 1027 |
+
"objective/entropy": 1.6895666122436523,
|
| 1028 |
+
"objective/kl": 13.036446571350098,
|
| 1029 |
+
"objective/non_score_reward": -1.3036446571350098,
|
| 1030 |
+
"objective/rlhf_reward": -0.08131173253059387,
|
| 1031 |
+
"objective/scores": 1.21875,
|
| 1032 |
+
"policy/approxkl_avg": 1.397173285484314,
|
| 1033 |
+
"policy/clipfrac_avg": 0.296875,
|
| 1034 |
+
"policy/entropy_avg": 0.025877952575683594,
|
| 1035 |
+
"step": 245,
|
| 1036 |
+
"val/clipfrac_avg": 0.0,
|
| 1037 |
+
"val/num_eos_tokens": 11,
|
| 1038 |
+
"val/ratio": 0.9993641972541809,
|
| 1039 |
+
"val/ratio_var": 3.554957584128715e-05
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"episode": 12800,
|
| 1043 |
+
"epoch": 0.1755661321958111,
|
| 1044 |
+
"eps": 5,
|
| 1045 |
+
"loss/policy_avg": -0.013989413157105446,
|
| 1046 |
+
"loss/value_avg": 0.0,
|
| 1047 |
+
"lr": 2.6240409207161126e-06,
|
| 1048 |
+
"objective/entropy": 1.4321318864822388,
|
| 1049 |
+
"objective/kl": 13.751260757446289,
|
| 1050 |
+
"objective/non_score_reward": -1.3751261234283447,
|
| 1051 |
+
"objective/rlhf_reward": 0.024946460500359535,
|
| 1052 |
+
"objective/scores": 1.3984375,
|
| 1053 |
+
"policy/approxkl_avg": 0.3265579044818878,
|
| 1054 |
+
"policy/clipfrac_avg": 0.3095703125,
|
| 1055 |
+
"policy/entropy_avg": 0.02507495880126953,
|
| 1056 |
+
"step": 250,
|
| 1057 |
+
"val/clipfrac_avg": 0.0,
|
| 1058 |
+
"val/num_eos_tokens": 14,
|
| 1059 |
+
"val/ratio": 1.0016669034957886,
|
| 1060 |
+
"val/ratio_var": 3.951354665332474e-05
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"episode": 13056,
|
| 1064 |
+
"epoch": 0.1790774548397273,
|
| 1065 |
+
"eps": 5,
|
| 1066 |
+
"loss/policy_avg": -0.01614242233335972,
|
| 1067 |
+
"loss/value_avg": 0.0,
|
| 1068 |
+
"lr": 2.616368286445013e-06,
|
| 1069 |
+
"objective/entropy": 1.2477443218231201,
|
| 1070 |
+
"objective/kl": 14.385757446289062,
|
| 1071 |
+
"objective/non_score_reward": -1.4385757446289062,
|
| 1072 |
+
"objective/rlhf_reward": -0.048571567982435226,
|
| 1073 |
+
"objective/scores": 1.390625,
|
| 1074 |
+
"policy/approxkl_avg": 0.38643181324005127,
|
| 1075 |
+
"policy/clipfrac_avg": 0.33203125,
|
| 1076 |
+
"policy/entropy_avg": 0.02417755126953125,
|
| 1077 |
+
"step": 255,
|
| 1078 |
+
"val/clipfrac_avg": 0.0,
|
| 1079 |
+
"val/num_eos_tokens": 19,
|
| 1080 |
+
"val/ratio": 1.0020815134048462,
|
| 1081 |
+
"val/ratio_var": 0.00012469623470678926
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"episode": 13312,
|
| 1085 |
+
"epoch": 0.18258877748364355,
|
| 1086 |
+
"eps": 5,
|
| 1087 |
+
"loss/policy_avg": -0.013632966205477715,
|
| 1088 |
+
"loss/value_avg": 0.0,
|
| 1089 |
+
"lr": 2.6086956521739132e-06,
|
| 1090 |
+
"objective/entropy": 1.5228471755981445,
|
| 1091 |
+
"objective/kl": 14.862211227416992,
|
| 1092 |
+
"objective/non_score_reward": -1.486221194267273,
|
| 1093 |
+
"objective/rlhf_reward": -0.07545565813779831,
|
| 1094 |
+
"objective/scores": 1.40625,
|
| 1095 |
+
"policy/approxkl_avg": 2.011383056640625,
|
| 1096 |
+
"policy/clipfrac_avg": 0.3359375,
|
| 1097 |
+
"policy/entropy_avg": 0.027433395385742188,
|
| 1098 |
+
"step": 260,
|
| 1099 |
+
"val/clipfrac_avg": 0.0,
|
| 1100 |
+
"val/num_eos_tokens": 17,
|
| 1101 |
+
"val/ratio": 0.9998003244400024,
|
| 1102 |
+
"val/ratio_var": 2.738163857429754e-05
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"episode": 13568,
|
| 1106 |
+
"epoch": 0.18610010012755976,
|
| 1107 |
+
"eps": 5,
|
| 1108 |
+
"loss/policy_avg": -0.020372817292809486,
|
| 1109 |
+
"loss/value_avg": 0.0,
|
| 1110 |
+
"lr": 2.6010230179028136e-06,
|
| 1111 |
+
"objective/entropy": 1.633180856704712,
|
| 1112 |
+
"objective/kl": 14.094629287719727,
|
| 1113 |
+
"objective/non_score_reward": -1.4094629287719727,
|
| 1114 |
+
"objective/rlhf_reward": -0.015713702887296677,
|
| 1115 |
+
"objective/scores": 1.390625,
|
| 1116 |
+
"policy/approxkl_avg": 0.47778478264808655,
|
| 1117 |
+
"policy/clipfrac_avg": 0.3701171875,
|
| 1118 |
+
"policy/entropy_avg": 0.02643442153930664,
|
| 1119 |
+
"step": 265,
|
| 1120 |
+
"val/clipfrac_avg": 0.0,
|
| 1121 |
+
"val/num_eos_tokens": 14,
|
| 1122 |
+
"val/ratio": 1.0079278945922852,
|
| 1123 |
+
"val/ratio_var": 0.0023215855471789837
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"episode": 13824,
|
| 1127 |
+
"epoch": 0.189611422771476,
|
| 1128 |
+
"eps": 5,
|
| 1129 |
+
"loss/policy_avg": -0.01413625106215477,
|
| 1130 |
+
"loss/value_avg": 0.0,
|
| 1131 |
+
"lr": 2.5933503836317135e-06,
|
| 1132 |
+
"objective/entropy": 1.2899070978164673,
|
| 1133 |
+
"objective/kl": 14.59975528717041,
|
| 1134 |
+
"objective/non_score_reward": -1.4599756002426147,
|
| 1135 |
+
"objective/rlhf_reward": -0.09675531834363937,
|
| 1136 |
+
"objective/scores": 1.359375,
|
| 1137 |
+
"policy/approxkl_avg": 0.4568091630935669,
|
| 1138 |
+
"policy/clipfrac_avg": 0.3076171875,
|
| 1139 |
+
"policy/entropy_avg": 0.02667713165283203,
|
| 1140 |
+
"step": 270,
|
| 1141 |
+
"val/clipfrac_avg": 0.0,
|
| 1142 |
+
"val/num_eos_tokens": 19,
|
| 1143 |
+
"val/ratio": 1.003631830215454,
|
| 1144 |
+
"val/ratio_var": 0.00041694415267556906
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"episode": 14080,
|
| 1148 |
+
"epoch": 0.1931227454153922,
|
| 1149 |
+
"eps": 5,
|
| 1150 |
+
"loss/policy_avg": -0.018304049968719482,
|
| 1151 |
+
"loss/value_avg": 0.0,
|
| 1152 |
+
"lr": 2.585677749360614e-06,
|
| 1153 |
+
"objective/entropy": 1.3464603424072266,
|
| 1154 |
+
"objective/kl": 14.915502548217773,
|
| 1155 |
+
"objective/non_score_reward": -1.491550326347351,
|
| 1156 |
+
"objective/rlhf_reward": -0.013601185753941536,
|
| 1157 |
+
"objective/scores": 1.4765625,
|
| 1158 |
+
"policy/approxkl_avg": 0.5154660940170288,
|
| 1159 |
+
"policy/clipfrac_avg": 0.3251953125,
|
| 1160 |
+
"policy/entropy_avg": 0.024927139282226562,
|
| 1161 |
+
"step": 275,
|
| 1162 |
+
"val/clipfrac_avg": 0.0,
|
| 1163 |
+
"val/num_eos_tokens": 20,
|
| 1164 |
+
"val/ratio": 1.0014865398406982,
|
| 1165 |
+
"val/ratio_var": 8.263294148491696e-05
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"episode": 14336,
|
| 1169 |
+
"epoch": 0.19663406805930844,
|
| 1170 |
+
"eps": 5,
|
| 1171 |
+
"loss/policy_avg": -0.009162629023194313,
|
| 1172 |
+
"loss/value_avg": 0.0,
|
| 1173 |
+
"lr": 2.578005115089514e-06,
|
| 1174 |
+
"objective/entropy": 1.3251242637634277,
|
| 1175 |
+
"objective/kl": 14.600137710571289,
|
| 1176 |
+
"objective/non_score_reward": -1.460013747215271,
|
| 1177 |
+
"objective/rlhf_reward": -0.10571230947971344,
|
| 1178 |
+
"objective/scores": 1.3515625,
|
| 1179 |
+
"policy/approxkl_avg": 0.4187917411327362,
|
| 1180 |
+
"policy/clipfrac_avg": 0.3046875,
|
| 1181 |
+
"policy/entropy_avg": 0.023657798767089844,
|
| 1182 |
+
"step": 280,
|
| 1183 |
+
"val/clipfrac_avg": 0.0,
|
| 1184 |
+
"val/num_eos_tokens": 16,
|
| 1185 |
+
"val/ratio": 1.008554458618164,
|
| 1186 |
+
"val/ratio_var": 0.001467635971494019
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"episode": 14592,
|
| 1190 |
+
"epoch": 0.20014539070322465,
|
| 1191 |
+
"eps": 5,
|
| 1192 |
+
"loss/policy_avg": -0.01609072834253311,
|
| 1193 |
+
"loss/value_avg": 0.0,
|
| 1194 |
+
"lr": 2.5703324808184145e-06,
|
| 1195 |
+
"objective/entropy": 1.3078004121780396,
|
| 1196 |
+
"objective/kl": 14.999523162841797,
|
| 1197 |
+
"objective/non_score_reward": -1.4999523162841797,
|
| 1198 |
+
"objective/rlhf_reward": -0.15238332748413086,
|
| 1199 |
+
"objective/scores": 1.3515625,
|
| 1200 |
+
"policy/approxkl_avg": 0.3968128561973572,
|
| 1201 |
+
"policy/clipfrac_avg": 0.36328125,
|
| 1202 |
+
"policy/entropy_avg": 0.023943424224853516,
|
| 1203 |
+
"step": 285,
|
| 1204 |
+
"val/clipfrac_avg": 0.0,
|
| 1205 |
+
"val/num_eos_tokens": 12,
|
| 1206 |
+
"val/ratio": 1.0019521713256836,
|
| 1207 |
+
"val/ratio_var": 8.228437945945188e-05
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"episode": 14848,
|
| 1211 |
+
"epoch": 0.2036567133471409,
|
| 1212 |
+
"eps": 5,
|
| 1213 |
+
"loss/policy_avg": -0.014186807908117771,
|
| 1214 |
+
"loss/value_avg": 0.0,
|
| 1215 |
+
"lr": 2.562659846547315e-06,
|
| 1216 |
+
"objective/entropy": 1.2583755254745483,
|
| 1217 |
+
"objective/kl": 15.623100280761719,
|
| 1218 |
+
"objective/non_score_reward": -1.5623100996017456,
|
| 1219 |
+
"objective/rlhf_reward": -0.09625323116779327,
|
| 1220 |
+
"objective/scores": 1.46875,
|
| 1221 |
+
"policy/approxkl_avg": 0.5678977370262146,
|
| 1222 |
+
"policy/clipfrac_avg": 0.3076171875,
|
| 1223 |
+
"policy/entropy_avg": 0.024990558624267578,
|
| 1224 |
+
"step": 290,
|
| 1225 |
+
"val/clipfrac_avg": 0.0,
|
| 1226 |
+
"val/num_eos_tokens": 13,
|
| 1227 |
+
"val/ratio": 1.0014848709106445,
|
| 1228 |
+
"val/ratio_var": 4.219371476210654e-05
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"episode": 15104,
|
| 1232 |
+
"epoch": 0.2071680359910571,
|
| 1233 |
+
"eps": 5,
|
| 1234 |
+
"loss/policy_avg": -0.013804701156914234,
|
| 1235 |
+
"loss/value_avg": 0.0,
|
| 1236 |
+
"lr": 2.5549872122762148e-06,
|
| 1237 |
+
"objective/entropy": 1.568720817565918,
|
| 1238 |
+
"objective/kl": 14.687668800354004,
|
| 1239 |
+
"objective/non_score_reward": -1.4687669277191162,
|
| 1240 |
+
"objective/rlhf_reward": -0.17009752988815308,
|
| 1241 |
+
"objective/scores": 1.296875,
|
| 1242 |
+
"policy/approxkl_avg": 0.3046334981918335,
|
| 1243 |
+
"policy/clipfrac_avg": 0.26953125,
|
| 1244 |
+
"policy/entropy_avg": 0.027862548828125,
|
| 1245 |
+
"step": 295,
|
| 1246 |
+
"val/clipfrac_avg": 0.0,
|
| 1247 |
+
"val/num_eos_tokens": 16,
|
| 1248 |
+
"val/ratio": 1.0005717277526855,
|
| 1249 |
+
"val/ratio_var": 1.1324932529532816e-05
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"episode": 15360,
|
| 1253 |
+
"epoch": 0.21067935863497333,
|
| 1254 |
+
"eps": 5,
|
| 1255 |
+
"loss/policy_avg": -0.018133502453565598,
|
| 1256 |
+
"loss/value_avg": 0.0,
|
| 1257 |
+
"lr": 2.547314578005115e-06,
|
| 1258 |
+
"objective/entropy": 1.2987349033355713,
|
| 1259 |
+
"objective/kl": 13.89183235168457,
|
| 1260 |
+
"objective/non_score_reward": -1.3891831636428833,
|
| 1261 |
+
"objective/rlhf_reward": -0.12500587105751038,
|
| 1262 |
+
"objective/scores": 1.265625,
|
| 1263 |
+
"policy/approxkl_avg": 0.31936001777648926,
|
| 1264 |
+
"policy/clipfrac_avg": 0.33984375,
|
| 1265 |
+
"policy/entropy_avg": 0.02469015121459961,
|
| 1266 |
+
"step": 300,
|
| 1267 |
+
"val/clipfrac_avg": 0.0,
|
| 1268 |
+
"val/num_eos_tokens": 18,
|
| 1269 |
+
"val/ratio": 1.0020601749420166,
|
| 1270 |
+
"val/ratio_var": 3.1293042411562055e-05
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"episode": 15616,
|
| 1274 |
+
"epoch": 0.21419068127888954,
|
| 1275 |
+
"eps": 5,
|
| 1276 |
+
"loss/policy_avg": -0.01710616797208786,
|
| 1277 |
+
"loss/value_avg": 0.0,
|
| 1278 |
+
"lr": 2.5396419437340155e-06,
|
| 1279 |
+
"objective/entropy": 1.4288297891616821,
|
| 1280 |
+
"objective/kl": 14.952780723571777,
|
| 1281 |
+
"objective/non_score_reward": -1.4952781200408936,
|
| 1282 |
+
"objective/rlhf_reward": -0.15792769193649292,
|
| 1283 |
+
"objective/scores": 1.3359375,
|
| 1284 |
+
"policy/approxkl_avg": 0.6461950540542603,
|
| 1285 |
+
"policy/clipfrac_avg": 0.3125,
|
| 1286 |
+
"policy/entropy_avg": 0.02637958526611328,
|
| 1287 |
+
"step": 305,
|
| 1288 |
+
"val/clipfrac_avg": 0.0,
|
| 1289 |
+
"val/num_eos_tokens": 19,
|
| 1290 |
+
"val/ratio": 1.0013606548309326,
|
| 1291 |
+
"val/ratio_var": 4.203971548122354e-05
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"episode": 15872,
|
| 1295 |
+
"epoch": 0.21770200392280575,
|
| 1296 |
+
"eps": 5,
|
| 1297 |
+
"loss/policy_avg": -0.016128187999129295,
|
| 1298 |
+
"loss/value_avg": 0.0,
|
| 1299 |
+
"lr": 2.531969309462916e-06,
|
| 1300 |
+
"objective/entropy": 1.3288850784301758,
|
| 1301 |
+
"objective/kl": 15.583921432495117,
|
| 1302 |
+
"objective/non_score_reward": -1.55839204788208,
|
| 1303 |
+
"objective/rlhf_reward": -0.07665687799453735,
|
| 1304 |
+
"objective/scores": 1.484375,
|
| 1305 |
+
"policy/approxkl_avg": 0.3284182548522949,
|
| 1306 |
+
"policy/clipfrac_avg": 0.328125,
|
| 1307 |
+
"policy/entropy_avg": 0.02404165267944336,
|
| 1308 |
+
"step": 310,
|
| 1309 |
+
"val/clipfrac_avg": 0.0,
|
| 1310 |
+
"val/num_eos_tokens": 16,
|
| 1311 |
+
"val/ratio": 1.0064442157745361,
|
| 1312 |
+
"val/ratio_var": 0.0015344778075814247
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"episode": 16128,
|
| 1316 |
+
"epoch": 0.221213326566722,
|
| 1317 |
+
"eps": 5,
|
| 1318 |
+
"loss/policy_avg": -0.015278931707143784,
|
| 1319 |
+
"loss/value_avg": 0.0,
|
| 1320 |
+
"lr": 2.524296675191816e-06,
|
| 1321 |
+
"objective/entropy": 1.3236112594604492,
|
| 1322 |
+
"objective/kl": 14.773448944091797,
|
| 1323 |
+
"objective/non_score_reward": -1.4773449897766113,
|
| 1324 |
+
"objective/rlhf_reward": -0.08708612620830536,
|
| 1325 |
+
"objective/scores": 1.390625,
|
| 1326 |
+
"policy/approxkl_avg": 0.2980467975139618,
|
| 1327 |
+
"policy/clipfrac_avg": 0.34765625,
|
| 1328 |
+
"policy/entropy_avg": 0.02494335174560547,
|
| 1329 |
+
"step": 315,
|
| 1330 |
+
"val/clipfrac_avg": 0.0,
|
| 1331 |
+
"val/num_eos_tokens": 7,
|
| 1332 |
+
"val/ratio": 1.0008249282836914,
|
| 1333 |
+
"val/ratio_var": 1.927867742779199e-05
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"episode": 16384,
|
| 1337 |
+
"epoch": 0.2247246492106382,
|
| 1338 |
+
"eps": 5,
|
| 1339 |
+
"loss/policy_avg": -0.020951703190803528,
|
| 1340 |
+
"loss/value_avg": 0.0,
|
| 1341 |
+
"lr": 2.516624040920716e-06,
|
| 1342 |
+
"objective/entropy": 1.2670817375183105,
|
| 1343 |
+
"objective/kl": 14.8348970413208,
|
| 1344 |
+
"objective/non_score_reward": -1.483489751815796,
|
| 1345 |
+
"objective/rlhf_reward": 0.03382519632577896,
|
| 1346 |
+
"objective/scores": 1.515625,
|
| 1347 |
+
"policy/approxkl_avg": 1.0973663330078125,
|
| 1348 |
+
"policy/clipfrac_avg": 0.361328125,
|
| 1349 |
+
"policy/entropy_avg": 0.02091073989868164,
|
| 1350 |
+
"step": 320,
|
| 1351 |
+
"val/clipfrac_avg": 0.0,
|
| 1352 |
+
"val/num_eos_tokens": 15,
|
| 1353 |
+
"val/ratio": 1.003138542175293,
|
| 1354 |
+
"val/ratio_var": 0.0001205340595333837
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"episode": 16640,
|
| 1358 |
+
"epoch": 0.22823597185455444,
|
| 1359 |
+
"eps": 5,
|
| 1360 |
+
"loss/policy_avg": -0.006676271557807922,
|
| 1361 |
+
"loss/value_avg": 0.0,
|
| 1362 |
+
"lr": 2.5089514066496164e-06,
|
| 1363 |
+
"objective/entropy": 1.191056728363037,
|
| 1364 |
+
"objective/kl": 16.46404457092285,
|
| 1365 |
+
"objective/non_score_reward": -1.646404504776001,
|
| 1366 |
+
"objective/rlhf_reward": -0.14990828931331635,
|
| 1367 |
+
"objective/scores": 1.5,
|
| 1368 |
+
"policy/approxkl_avg": 0.31475046277046204,
|
| 1369 |
+
"policy/clipfrac_avg": 0.2578125,
|
| 1370 |
+
"policy/entropy_avg": 0.021608352661132812,
|
| 1371 |
+
"step": 325,
|
| 1372 |
+
"val/clipfrac_avg": 0.0,
|
| 1373 |
+
"val/num_eos_tokens": 25,
|
| 1374 |
+
"val/ratio": 1.000575065612793,
|
| 1375 |
+
"val/ratio_var": 1.735856494633481e-05
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"episode": 16896,
|
| 1379 |
+
"epoch": 0.23174729449847065,
|
| 1380 |
+
"eps": 5,
|
| 1381 |
+
"loss/policy_avg": -0.02127978205680847,
|
| 1382 |
+
"loss/value_avg": 0.0,
|
| 1383 |
+
"lr": 2.5012787723785167e-06,
|
| 1384 |
+
"objective/entropy": 1.490570068359375,
|
| 1385 |
+
"objective/kl": 16.22044563293457,
|
| 1386 |
+
"objective/non_score_reward": -1.622044563293457,
|
| 1387 |
+
"objective/rlhf_reward": -0.015120631083846092,
|
| 1388 |
+
"objective/scores": 1.609375,
|
| 1389 |
+
"policy/approxkl_avg": 2.5871665477752686,
|
| 1390 |
+
"policy/clipfrac_avg": 0.35546875,
|
| 1391 |
+
"policy/entropy_avg": 0.027353286743164062,
|
| 1392 |
+
"step": 330,
|
| 1393 |
+
"val/clipfrac_avg": 0.0,
|
| 1394 |
+
"val/num_eos_tokens": 25,
|
| 1395 |
+
"val/ratio": 1.003063440322876,
|
| 1396 |
+
"val/ratio_var": 6.509448576252908e-05
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"episode": 17152,
|
| 1400 |
+
"epoch": 0.23525861714238688,
|
| 1401 |
+
"eps": 5,
|
| 1402 |
+
"loss/policy_avg": -0.013108542189002037,
|
| 1403 |
+
"loss/value_avg": 0.0,
|
| 1404 |
+
"lr": 2.493606138107417e-06,
|
| 1405 |
+
"objective/entropy": 1.2718842029571533,
|
| 1406 |
+
"objective/kl": 16.047882080078125,
|
| 1407 |
+
"objective/non_score_reward": -1.604788064956665,
|
| 1408 |
+
"objective/rlhf_reward": -0.12415145337581635,
|
| 1409 |
+
"objective/scores": 1.484375,
|
| 1410 |
+
"policy/approxkl_avg": 0.2758824825286865,
|
| 1411 |
+
"policy/clipfrac_avg": 0.287109375,
|
| 1412 |
+
"policy/entropy_avg": 0.024268627166748047,
|
| 1413 |
+
"step": 335,
|
| 1414 |
+
"val/clipfrac_avg": 0.0,
|
| 1415 |
+
"val/num_eos_tokens": 16,
|
| 1416 |
+
"val/ratio": 1.0036962032318115,
|
| 1417 |
+
"val/ratio_var": 0.0003905180492438376
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"episode": 17408,
|
| 1421 |
+
"epoch": 0.2387699397863031,
|
| 1422 |
+
"eps": 5,
|
| 1423 |
+
"loss/policy_avg": -0.014837839640676975,
|
| 1424 |
+
"loss/value_avg": 0.0,
|
| 1425 |
+
"lr": 2.4859335038363174e-06,
|
| 1426 |
+
"objective/entropy": 1.3406567573547363,
|
| 1427 |
+
"objective/kl": 16.428348541259766,
|
| 1428 |
+
"objective/non_score_reward": -1.642835021018982,
|
| 1429 |
+
"objective/rlhf_reward": 0.018702151253819466,
|
| 1430 |
+
"objective/scores": 1.6640625,
|
| 1431 |
+
"policy/approxkl_avg": 0.192110076546669,
|
| 1432 |
+
"policy/clipfrac_avg": 0.3388671875,
|
| 1433 |
+
"policy/entropy_avg": 0.025295734405517578,
|
| 1434 |
+
"step": 340,
|
| 1435 |
+
"val/clipfrac_avg": 0.0,
|
| 1436 |
+
"val/num_eos_tokens": 19,
|
| 1437 |
+
"val/ratio": 1.0008959770202637,
|
| 1438 |
+
"val/ratio_var": 1.205760781886056e-05
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"episode": 17664,
|
| 1442 |
+
"epoch": 0.24228126243021933,
|
| 1443 |
+
"eps": 5,
|
| 1444 |
+
"loss/policy_avg": -0.01899782381951809,
|
| 1445 |
+
"loss/value_avg": 0.0,
|
| 1446 |
+
"lr": 2.4782608695652173e-06,
|
| 1447 |
+
"objective/entropy": 1.5880205631256104,
|
| 1448 |
+
"objective/kl": 15.775943756103516,
|
| 1449 |
+
"objective/non_score_reward": -1.577594518661499,
|
| 1450 |
+
"objective/rlhf_reward": -0.08363974094390869,
|
| 1451 |
+
"objective/scores": 1.4921875,
|
| 1452 |
+
"policy/approxkl_avg": 0.9254180192947388,
|
| 1453 |
+
"policy/clipfrac_avg": 0.3251953125,
|
| 1454 |
+
"policy/entropy_avg": 0.024907588958740234,
|
| 1455 |
+
"step": 345,
|
| 1456 |
+
"val/clipfrac_avg": 0.0,
|
| 1457 |
+
"val/num_eos_tokens": 15,
|
| 1458 |
+
"val/ratio": 1.000749111175537,
|
| 1459 |
+
"val/ratio_var": 2.8957187168998644e-05
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"episode": 17920,
|
| 1463 |
+
"epoch": 0.24579258507413554,
|
| 1464 |
+
"eps": 5,
|
| 1465 |
+
"loss/policy_avg": -0.014669202268123627,
|
| 1466 |
+
"loss/value_avg": 0.0,
|
| 1467 |
+
"lr": 2.4705882352941177e-06,
|
| 1468 |
+
"objective/entropy": 1.2656543254852295,
|
| 1469 |
+
"objective/kl": 16.034730911254883,
|
| 1470 |
+
"objective/non_score_reward": -1.60347318649292,
|
| 1471 |
+
"objective/rlhf_reward": -0.011744961142539978,
|
| 1472 |
+
"objective/scores": 1.59375,
|
| 1473 |
+
"policy/approxkl_avg": 1.004683017730713,
|
| 1474 |
+
"policy/clipfrac_avg": 0.2646484375,
|
| 1475 |
+
"policy/entropy_avg": 0.023741722106933594,
|
| 1476 |
+
"step": 350,
|
| 1477 |
+
"val/clipfrac_avg": 0.0,
|
| 1478 |
+
"val/num_eos_tokens": 19,
|
| 1479 |
+
"val/ratio": 1.0009608268737793,
|
| 1480 |
+
"val/ratio_var": 4.649764014175162e-05
|
| 1481 |
+
}
|
| 1482 |
+
],
|
| 1483 |
+
"logging_steps": 100,
|
| 1484 |
+
"max_steps": 391,
|
| 1485 |
+
"num_input_tokens_seen": 0,
|
| 1486 |
+
"num_train_epochs": 1.3716104077797742,
|
| 1487 |
+
"save_steps": 50,
|
| 1488 |
+
"stateful_callbacks": {
|
| 1489 |
+
"TrainerControl": {
|
| 1490 |
+
"args": {
|
| 1491 |
+
"should_epoch_stop": false,
|
| 1492 |
+
"should_evaluate": false,
|
| 1493 |
+
"should_log": false,
|
| 1494 |
+
"should_save": true,
|
| 1495 |
+
"should_training_stop": false
|
| 1496 |
+
},
|
| 1497 |
+
"attributes": {}
|
| 1498 |
+
}
|
| 1499 |
+
},
|
| 1500 |
+
"total_flos": 0,
|
| 1501 |
+
"train_batch_size": null,
|
| 1502 |
+
"trial_name": null,
|
| 1503 |
+
"trial_params": null
|
| 1504 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f69fedf04484e314c878c0562873de1761b9262a2545636c76d80eb9a5506163
|
| 3 |
+
size 6840
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|