jiaxie commited on
Commit
de91ac3
·
verified ·
1 Parent(s): 08ab19b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -3
README.md CHANGED
@@ -1,3 +1,58 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ First we define a class T5RegressionModel:
6
+ ```python
7
+ from transformers import (
8
+ T5Config,
9
+ T5EncoderModel,
10
+ T5Tokenizer,
11
+ PreTrainedModel,
12
+ TrainingArguments,
13
+ Trainer,
14
+ DataCollatorWithPadding,
15
+ )
16
+ class T5RegressionModel(PreTrainedModel):
17
+
18
+ config_class = T5Config
19
+
20
+ def __init__(self, config, d_model=None):
21
+ super().__init__(config)
22
+
23
+ self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
24
+
25
+
26
+ hidden_dim = d_model if d_model is not None else config.d_model
27
+ self.regression_head = nn.Linear(hidden_dim, 1)
28
+
29
+ def forward(
30
+ self,
31
+ input_ids=None,
32
+ attention_mask=None,
33
+ labels=None,
34
+ **kwargs
35
+ ):
36
+ encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
37
+ hidden_states = encoder_outputs.last_hidden_state
38
+
39
+ mask = attention_mask.unsqueeze(-1)
40
+ pooled_output = (hidden_states * mask).sum(dim=1) / mask.sum(dim=1)
41
+ logits = self.regression_head(pooled_output).squeeze(-1) # [batch_size]
42
+
43
+
44
+ loss = None
45
+ if labels is not None:
46
+ labels = labels.float()
47
+ loss = nn.MSELoss()(logits, labels)
48
+
49
+ return {
50
+ "loss": loss,
51
+ "logits": logits
52
+ }
53
+ ```
54
+ Then we load our pretrained model
55
+ ```python
56
+ tokenizer = T5Tokenizer.from_pretrained("jiaxie/DeepProtT5-Stability", do_lower_case=False)
57
+ model = T5RegressionModel.from_pretrained("jiaxie/DeepProtT5-Stability", torch_dtype=torch.bfloat16).to("cuda")
58
+ ```