File size: 18,452 Bytes
1da93af 3c865c7 1da93af 3c865c7 1da93af 3d813dc 1da93af 3c865c7 1da93af 3d813dc 1da93af 3c865c7 1da93af 3d813dc 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3d813dc 1da93af 3d813dc 1da93af 3d813dc 1da93af 3d813dc 1da93af 3c865c7 1da93af 3d813dc 1da93af 3d813dc 1da93af 3d813dc 1da93af 919111a 1da93af 919111a 1da93af bcecc9a 1da93af bcecc9a 919111a 3d813dc 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 1da93af 919111a 1da93af 3d813dc 1da93af 3d813dc 1da93af 3c865c7 1da93af 3d813dc 1da93af 3c865c7 1da93af 3c865c7 1da93af 3c865c7 3d813dc 1da93af 3d813dc 1da93af 3d813dc 1da93af 3c865c7 3d813dc 1da93af 3c865c7 3d813dc 3c865c7 1da93af 3c865c7 3d813dc 3c865c7 1da93af 3c865c7 1da93af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import argparse
import glob
import os
import warnings
from time import perf_counter
from typing import Any, Dict, List, Optional, Tuple
from urllib.parse import urlparse
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
import torch
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
TextStreamer,
)
from transformers.utils import is_flash_attn_2_available
TEST_IMAGE = './assets/the_persistence_of_memory.jpg'
class Timer:
def __enter__(self):
self.start = perf_counter()
self.readout = None
return self
def __exit__(self, *_, **__):
self.time = perf_counter() - self.start
self.readout = f'{self.time:.3f}'
def _resolve_device_dtype_and_attn() -> Tuple[torch.device, torch.dtype, str]:
if torch.cuda.is_available():
device = torch.device('cuda')
if is_flash_attn_2_available():
dtype = torch.bfloat16
attn_implementation = 'flash_attention_2'
else:
dtype = torch.float16
attn_implementation = 'sdpa'
else:
if torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
dtype = torch.float32
attn_implementation = 'sdpa'
return device, dtype, attn_implementation
def _build_conversations(
images: Optional[List[str]],
prompts: Optional[List[str]],
map_mode: bool = False,
prompt_first: bool = False,
image_labels: bool = False,
):
def _is_url(_path: str) -> bool:
try:
result = urlparse(_path)
return result.scheme in ('http', 'https')
except Exception as e:
_ = str(e)
return False
images = images or []
expanded_image_paths = []
for path in images:
if _is_url(path):
expanded_image_paths.append(path)
elif any(char in path for char in ['*', '?', '[', ']']):
matched_files = glob.glob(path)
if matched_files:
expanded_image_paths.extend(sorted(matched_files))
else:
warnings.warn(f'No files matched pattern "{path}"')
else:
expanded_image_paths.append(path)
images = expanded_image_paths
n_images = len(images)
if prompts is None:
if len(images) == 0:
images = [TEST_IMAGE]
n_images = len(images)
prompts = (
['Describe the image in 100 words']
if n_images == 1 or map_mode
else ['Describe the images in 100 words']
)
n_prompts = len(prompts)
if n_images == 0:
examples = [([], prompt) for prompt in prompts]
elif n_images > 1 and n_images == n_prompts:
examples = [([image], prompt) for image, prompt in zip(images, prompts)]
elif map_mode:
if n_images > 1 and n_prompts == 1:
prompt = prompts[0]
print(f'Map mode: Applying 1 prompt to {n_images} images')
examples = [([image], prompt) for image in images]
elif n_images == 1 and n_prompts > 1:
image = images[0]
print(f'Map mode: Applying {n_prompts} prompts to 1 image')
examples = [([image], prompt) for prompt in prompts]
else:
raise ValueError(
'Map mode requires either (multiple images + 1 prompt) or '
'(1 image + multiple prompts). Got '
f'{n_images} images and {n_prompts} prompts'
)
else:
if n_prompts > 1:
raise ValueError(
'Non-map mode requires 1+ images and 1 prompt. Got '
f'{n_images} images and {n_prompts} prompts'
)
examples = [(images, prompts[0])]
conversations = []
allimages = []
allprompts = []
ordinals = [
'first',
'second',
'third',
'fourth',
'fifth',
'sixth',
'seventh',
'eighth',
'ninth',
'tenth',
]
for images, prompt in examples:
content = []
allimages.append(images)
allprompts.append(prompt)
if prompt_first:
content.append({'type': 'text', 'text': prompt})
if len(images) > 1 and image_labels:
for idx, img in enumerate(images):
ordinal = ordinals[idx] if idx < len(ordinals) else f'{idx + 1}th'
image = images[idx]
descriptor = f'url: {image}'
if os.path.isfile(image):
descriptor = f'filename: {os.path.basename(image)}'
content.append(
{
'type': 'text',
'text': f'(this is the {ordinal} image, {descriptor})',
}
)
content.append({'type': 'image', 'image': img})
else:
content.extend([{'type': 'image', 'image': image} for image in images])
if not prompt_first:
content.append({'type': 'text', 'text': prompt})
conversations.append([{'role': 'user', 'content': content}])
return conversations, allimages, allprompts
def _token_usage_report(
inputs: Dict[str, Any],
n_images: int,
max_sequence_length: int,
special_image_token_ids: Dict[str, int],
):
"""Report token usage statistics in tree format."""
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
# Total tokens in sequence (non-padding)
total_tokens = attention_mask.sum().item()
# Count ALL image-related tokens directly from input_ids
image_patch_id = special_image_token_ids['image_patch_token_id']
image_start_id = special_image_token_ids['image_start_token_id']
image_end_id = special_image_token_ids['image_end_token_id']
image_column_token_id = special_image_token_ids['image_column_token_id']
num_patch = (input_ids == image_patch_id).sum().item()
num_start = (input_ids == image_start_id).sum().item()
num_end = (input_ids == image_end_id).sum().item()
num_col = (input_ids == image_column_token_id).sum().item()
# Total image tokens = all image-related special tokens
total_image_tokens = num_patch + num_start + num_end + num_col
# Pure text tokens (excluding all image-related tokens)
text_token_count = total_tokens - total_image_tokens
report = [
f'Input Context Window Layout (max: {max_sequence_length} tokens):',
f'├── Total: {total_tokens} tokens '
f'({((total_tokens / max_sequence_length) * 100):.1f}%)',
]
# Count tokens per image by finding img_start and img_end boundaries
# Each image is delimited by img_start and img_end tokens
tokens_per_image_list = []
# Find all img_start and img_end positions in input_ids
start_positions = (input_ids == image_start_id).nonzero(as_tuple=True)[0].tolist()
end_positions = (input_ids == image_end_id).nonzero(as_tuple=True)[0].tolist()
if len(start_positions) > 0 and len(end_positions) > 0:
# Each image typically has 2 start and 2 end tokens
# Determine actual number of images in context
n_starts_per_image = 2 # typical case
n_images_in_context = len(start_positions) // n_starts_per_image
# Warn if not all images fit in context
if n_images_in_context < n_images:
warnings.warn(
f'Only {n_images_in_context}/{n_images} images fit in context window'
)
for idx in range(n_images):
if idx < n_images_in_context:
# Get the start and end indices for this image
start_idx_begin = idx * n_starts_per_image
end_idx_end = (idx + 1) * n_starts_per_image
if start_idx_begin < len(start_positions) and end_idx_end <= len(
end_positions
):
# First start position and last end position define the image span
first_start = start_positions[start_idx_begin]
last_end = end_positions[end_idx_end - 1]
# Count tokens from first start to last end (inclusive)
num_tokens = last_end - first_start + 1
tokens_per_image_list.append(num_tokens)
else:
tokens_per_image_list.append(0)
else:
# Image didn't fit in context
tokens_per_image_list.append(0)
else:
# Fallback to uniform division if we can't find boundaries
tokens_per_image = total_image_tokens // n_images if n_images > 0 else 0
tokens_per_image_list = [tokens_per_image] * n_images
for idx in range(n_images):
n_tokens = tokens_per_image_list[idx] if idx < len(tokens_per_image_list) else 0
pct = n_tokens / max_sequence_length * 100
report.append(f'├── Image {idx + 1} → {n_tokens} tokens ({pct:.1f}%)')
text_pct = text_token_count / max_sequence_length * 100
report.append(f'└── Text: {text_token_count} tokens ({text_pct:.1f}%)')
return '\n'.join(report)
def test_jvlm():
parser = argparse.ArgumentParser(
description='jina-vlm vision-language model inference.'
)
default_model = '.' if os.path.exists('./config.json') else 'jinaai/jina-vlm'
parser.add_argument(
'-m',
'--model',
default=default_model,
help=(
'Model path. Auto-detects local repo (if config.json exists) or '
'falls back to "jinaai/jina-vlm" from HuggingFace.'
),
)
parser.add_argument(
'-i',
'--image',
action='append',
help=(
'Image path, URL, or glob pattern (can specify multiple times, default: '
'`[]`).'
),
)
parser.add_argument(
'-p',
'--prompt',
action='append',
help=(
'Text prompt (can specify multiple times, default: '
'`"Describe the image for me in 100 words"` or `"Describe the images for '
'me in 100 words"` if multiple images are provided).'
),
)
parser.add_argument(
'--max-crops',
type=int,
default=12,
help='Maximum crops (default: `12`).',
)
parser.add_argument(
'--max-tokens',
type=int,
default=1024,
help='Maximum output tokens (default: `1024`).',
)
parser.add_argument(
'--max-pixels',
type=int,
default=None,
help=(
'Max pixels per image, larger images are resized and the aspect ratio is '
'preserved (default: `None`)'
),
)
parser.add_argument(
'--stream',
action='store_true',
help='Enable streaming (default: `False`).',
)
parser.add_argument(
'--image-labels',
action='store_true',
help=(
'Enable ordinal text labels after each image (default: `False` -> '
'no image labels for multi-image).'
),
)
parser.add_argument(
'--prompt-first',
action='store_true',
help=(
'Place prompt before images instead of after (default: `False` -> '
'prompt after images).'
),
)
parser.add_argument(
'--map',
action='store_true',
help=(
'Map mode - apply single prompt to multiple images OR multiple prompts to '
'single image (default: `False` -> no mapping)'
),
)
args = parser.parse_args()
print()
print('Welcome to the jinaai/jina-vlm playground ✨')
print('Use this script to test our model!')
print('- Jina AI')
print()
print('--- Loading the model ...')
print('Specifying device, dtype and attention implementation ...')
device, dtype, attn_implementation = _resolve_device_dtype_and_attn()
print(f'Using attention implementation: {attn_implementation}')
print(f'Using device: {device}')
print(f'Using dtype: {dtype}')
print('Model path: ', args.model)
processor = AutoProcessor.from_pretrained(
args.model,
trust_remote_code=True,
use_fast=False,
)
model = AutoModelForCausalLM.from_pretrained(
args.model,
trust_remote_code=True,
dtype=dtype,
low_cpu_mem_usage=True,
device_map=device.type,
attn_implementation=attn_implementation,
)
max_sequence_length = getattr(model.config, 'max_sequence_length', 40960)
n_params = sum(p.numel() for p in model.parameters())
print(f'Max sequence length: {max_sequence_length}')
print(f'Number of parameters: {n_params}')
print('Done ✅')
print()
print("--- Let's create some conversations ...")
conversations, images, prompts = _build_conversations(
args.image,
args.prompt,
map_mode=args.map,
prompt_first=args.prompt_first,
image_labels=args.image_labels,
)
n_conversations = len(conversations)
print(f'Built {n_conversations} conversations 🚀')
print()
print('--- Transforming conversations to numbers ...')
timer = Timer()
with timer:
texts = processor.apply_chat_template(conversations, add_generation_prompt=True)
inputs = processor(
text=texts,
images=images,
padding='longest',
max_length=max_sequence_length,
max_crops=args.max_crops,
max_pixels=args.max_pixels,
do_resize=True if args.max_pixels is not None else False,
return_tensors='pt',
)
texts = texts if isinstance(texts, list) else [texts]
device_inputs = {}
for k, v in inputs.items():
if k == 'labels':
continue
if isinstance(v, torch.Tensor):
if v.is_floating_point():
device_inputs[k] = v.to(device, dtype=dtype, non_blocking=True)
else:
device_inputs[k] = v.to(device, non_blocking=True)
else:
device_inputs[k] = v
processing_time = timer.readout
special_image_token_ids = {
'image_patch_token_id': processor.image_patch_token_id,
'image_start_token_id': processor.image_start_token_id,
'image_end_token_id': processor.image_end_token_id,
'image_column_token_id': processor.image_column_token_id,
}
token_usage_reports = []
for idx in range(n_conversations):
ith_inputs = {k: v[idx] for k, v in inputs.items()}
token_usage_report = _token_usage_report(
ith_inputs,
len(images[idx]),
max_sequence_length=max_sequence_length,
special_image_token_ids=special_image_token_ids,
)
token_usage_reports.append(token_usage_report)
print(f'Processed {n_conversations} conversations in {processing_time}s')
print('All done 🪄')
print()
print('--- Running inference ...')
generated_tokens = 0
input_prompts = inputs['input_ids']
if args.stream:
print('Streaming mode')
print('Inference will run sequentially')
print()
streamer = TextStreamer(
processor.tokenizer, skip_prompt=True, skip_special_tokens=True
)
generation_time = 0.0
for idx in range(n_conversations):
print(f'* Conversation {idx + 1}/{n_conversations}')
print(f'├── 🖼️Images: {images[idx]}')
print(f'├── 📜Prompt: {prompts[idx]}')
print(f'├── 💬Chat:{texts[idx]}')
print('└── 🧠Response:', end='')
ith_inputs = {k: v[idx].unsqueeze(0) for k, v in device_inputs.items()}
with (
timer,
torch.no_grad(),
torch.autocast(
device.type, enabled=(device.type != 'mps'), dtype=dtype
),
):
output = model.generate(
**ith_inputs,
streamer=streamer,
generation_config=GenerationConfig(
max_new_tokens=args.max_tokens,
do_sample=False,
),
return_dict_in_generate=True,
use_model_defaults=True,
)
generation_time += timer.time
out = output.sequences[0][len(input_prompts[idx].tolist()) :]
generated_tokens += len(out)
print('Token usage report:')
print(token_usage_reports[idx])
print()
else:
print('Non-streaming mode')
print('Inference will run in a batch')
print()
with (
timer,
torch.no_grad(),
torch.autocast(device.type, enabled=(device.type != 'mps'), dtype=dtype),
):
output = model.generate(
**device_inputs,
generation_config=GenerationConfig(
max_new_tokens=args.max_tokens,
do_sample=False,
),
return_dict_in_generate=True,
use_model_defaults=True,
)
generation_time = timer.time
for idx in range(n_conversations):
out = output.sequences[idx][len(input_prompts[idx].tolist()) :]
generated_tokens += len(out)
response = processor.tokenizer.decode(out, skip_special_tokens=True)
print(f'* Conversation {idx + 1}/{n_conversations}')
print(f'├── 🖼️Images: {images[idx]}')
print(f'├── 📜Prompt: {prompts[idx]}')
print(f'├── 💬Chat:{texts[idx]}')
print(f'└── 🧠Response:{response}')
print('Token usage report:')
print(token_usage_reports[idx])
print()
res_per_sec = n_conversations / generation_time if generation_time > 0 else 0
tok_per_sec = generated_tokens / generation_time if generation_time > 0 else 0
print(f'Generated {n_conversations} responses in {generation_time:.3f}s')
print(f'{res_per_sec:.2f} res/s {tok_per_sec:.2f} tok/s')
print('Done ✅')
if __name__ == '__main__':
test_jvlm()
|