File size: 15,148 Bytes
4efdbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "## Donwload depedency"
      ],
      "metadata": {
        "id": "iLN3LdAwEiit"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118\n",
        "!pip install --upgrade librosa pydub"
      ],
      "metadata": {
        "id": "1jyjtthXDZ14"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Download dataset and processing features"
      ],
      "metadata": {
        "id": "7s9Bv3o6Eoxt"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!mkdir /content/datasets\n",
        "!wget https://os.unil.cloud.switch.ch/fma/fma_small.zip\n",
        "!wget https://huggingface.co/datasets/johaness14/ProcessedFeaturesFMASmall/resolve/main/ProcessedFeaturesFMASmall.zip?download=true -O ProcessedFeaturesFMASmall.zip\n",
        "!unzip /content/fma_small.zip\n",
        "!unzip /content/ProcessedFeaturesFMASmall.zip\n",
        "!mv /content/fma_small /content/datasets\n",
        "!mv /content/ProcessedFeaturesFMASmall /content/datasets"
      ],
      "metadata": {
        "id": "I9amJ6FgDuAm"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Download pre-trained models"
      ],
      "metadata": {
        "id": "ieLp8mMbaBEw"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!mkdir /content/models\n",
        "!wget https://huggingface.co/johaness14/AI_MiniDJ/resolve/main/mixability_dataset.pkl?download=true -O mixability_dataset.pkl\n",
        "!wget https://huggingface.co/johaness14/AI_MiniDJ/resolve/main/scaler.pkl?download=true -O scaler.pkl\n",
        "!wget https://huggingface.co/johaness14/AI_MiniDJ/resolve/main/model_checkpoint.pth?download=true -O model_checkpoint.pth\n",
        "!mv /content/mixability_dataset.pkl /content/models\n",
        "!mv /content/scaler.pkl /content/models\n",
        "!mv /content/model_checkpoint.pth /content/models"
      ],
      "metadata": {
        "id": "-BsPkA3CaDvo"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Import library"
      ],
      "metadata": {
        "id": "h_byAuaXEyk9"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "import torch.nn as nn\n",
        "\n",
        "import os\n",
        "import glob\n",
        "import random\n",
        "import pickle\n",
        "import librosa\n",
        "import numpy as np\n",
        "from tqdm import tqdm\n",
        "from pydub import AudioSegment\n",
        "from IPython.display import Audio, display"
      ],
      "metadata": {
        "id": "5VrUtRMiDgUO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Configure the path"
      ],
      "metadata": {
        "id": "NaedUn7IGGVf"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# --- Path ---\n",
        "BASE_PATH = \"./datasets\"\n",
        "FEATURES_PATH = os.path.join(BASE_PATH, \"ProcessedFeaturesFMASmall\")\n",
        "FMA_AUDIO_PATH = os.path.join(BASE_PATH, \"fma_small\")\n",
        "MIX_OUTPUT_PATH = os.path.join(BASE_PATH, \"Mix_Results\")\n",
        "os.makedirs(MIX_OUTPUT_PATH, exist_ok=True)\n",
        "\n",
        "MODELS_PATH = \"./models\"\n",
        "SCALER_FILE = os.path.join(MODELS_PATH, \"scaler.pkl\")\n",
        "CHECKPOINT_FILE = os.path.join(MODELS_PATH, \"model_checkpoint.pth\")\n",
        "\n",
        "# --- Setup Device ---\n",
        "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
        "print(f\"Use device: {device}\")"
      ],
      "metadata": {
        "id": "eNtvwZYsEeLU"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Model"
      ],
      "metadata": {
        "id": "wNBTmjxsGKTf"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Redefine model architecture\n",
        "class MixabilityScorer(nn.Module):\n",
        "    def __init__(self, input_features=7):\n",
        "        super(MixabilityScorer, self).__init__()\n",
        "        self.network = nn.Sequential(\n",
        "            nn.Linear(input_features, 64), nn.ReLU(), nn.Dropout(0.5),\n",
        "            nn.Linear(64, 32), nn.ReLU(),\n",
        "            nn.Linear(32, 16), nn.ReLU(),\n",
        "            nn.Linear(16, 1), nn.Sigmoid()\n",
        "        )\n",
        "\n",
        "    def forward(self, x):\n",
        "        return self.network(x)\n",
        "\n",
        "# Initialize model and load checkpoint\n",
        "model = MixabilityScorer().to(device)\n",
        "checkpoint = torch.load(CHECKPOINT_FILE, map_location=device)\n",
        "model.load_state_dict(checkpoint['model_state_dict'])\n",
        "model.eval()\n",
        "print(\"Model loaded from checkpoint successfully.\")\n",
        "\n",
        "# Load scaler\n",
        "with open(SCALER_FILE, 'rb') as f:\n",
        "    scaler = pickle.load(f)\n",
        "print(\"Scaler loaded successfully.\")\n",
        "\n",
        "# Load all features into memory for hunting\n",
        "print(\"Loading all feature data into memory for hunting...\")\n",
        "all_feature_files = glob.glob(os.path.join(FEATURES_PATH, '*.npy'))\n",
        "all_features_data = [np.load(f, allow_pickle=True).item()\n",
        "                     for f in tqdm(all_feature_files, desc=\"Loading Features\")]\n",
        "print(f\"{len(all_features_data)} feature data ready.\")"
      ],
      "metadata": {
        "id": "IslYzyNtE72X"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Helper function to check key compatibility\n",
        "def are_keys_compatible(key1, key2):\n",
        "    \"\"\"Check if two musical keys are compatible for mixing\"\"\"\n",
        "    key_map = {'C': 1, 'C#': 2, 'D': 3, 'D#': 4, 'E': 5, 'F': 6,\n",
        "               'F#': 7, 'G': 8, 'G#': 9, 'A': 10, 'A#': 11, 'B': 12}\n",
        "\n",
        "    def parse_key(key_str):\n",
        "        parts = key_str.split()\n",
        "        return key_map.get(parts[0], 0), parts[1]\n",
        "\n",
        "    note1, mode1 = parse_key(key1)\n",
        "    note2, mode2 = parse_key(key2)\n",
        "\n",
        "    # Return 0 if invalid keys\n",
        "    if note1 == 0 or note2 == 0:\n",
        "        return 0.0\n",
        "\n",
        "    # Same key and mode\n",
        "    if note1 == note2 and mode1 == mode2:\n",
        "        return 1.0\n",
        "\n",
        "    # Adjacent keys (semitone apart)\n",
        "    if abs(note1 - note2) == 1 or abs(note1 - note2) == 11:\n",
        "        return 1.0\n",
        "\n",
        "    # Relative major/minor keys\n",
        "    if mode1 != mode2 and (note1 - note2) % 12 == 3 or (note2 - note1) % 12 == 3:\n",
        "        return 1.0\n",
        "\n",
        "    return 0.0\n",
        "\n",
        "\n",
        "def find_audio_path(track_id, root_path):\n",
        "    \"\"\"Find audio file path based on track ID\"\"\"\n",
        "    subfolder = track_id[:3]\n",
        "    return os.path.join(root_path, subfolder, f\"{track_id}.mp3\")\n",
        "\n",
        "\n",
        "def run_mixing_engine(track_id1, track_id2):\n",
        "    \"\"\"Execute mixing engine to create crossfaded mix of two tracks\"\"\"\n",
        "    print(\"   High score! Running Mixing Engine...\")\n",
        "\n",
        "    try:\n",
        "        # Load feature data for both tracks\n",
        "        f1 = next(item for item in all_features_data if item[\"track_id\"] == track_id1)\n",
        "        f2 = next(item for item in all_features_data if item[\"track_id\"] == track_id2)\n",
        "\n",
        "        # Load audio files\n",
        "        y1, sr1 = librosa.load(find_audio_path(track_id1, FMA_AUDIO_PATH), sr=None)\n",
        "        y2, sr2 = librosa.load(find_audio_path(track_id2, FMA_AUDIO_PATH), sr=sr1)\n",
        "\n",
        "        # Extract BPM and beat timing data\n",
        "        bpm1, beats1 = float(f1['bpm']), f1['beat_times']\n",
        "        bpm2, beats2 = float(f2['bpm']), f2['beat_times']\n",
        "\n",
        "        # Time-stretch second track to match first track's BPM\n",
        "        stretch_rate = bpm1 / bpm2\n",
        "        y2_stretched = librosa.effects.time_stretch(y2, rate=stretch_rate)\n",
        "        beats2_stretched = beats2 / stretch_rate\n",
        "\n",
        "        # Calculate transition parameters\n",
        "        song1_duration = librosa.get_duration(y=y1, sr=sr1)\n",
        "        beat_duration_s = 60.0 / bpm1\n",
        "        transition_duration_s = beat_duration_s * 8  # 8 beats transition\n",
        "        transition_start_point_s1 = song1_duration - transition_duration_s\n",
        "\n",
        "        # Check if song is long enough for transition\n",
        "        if transition_start_point_s1 < beats1.min():\n",
        "            return False\n",
        "\n",
        "        # Find beat-aligned cut points\n",
        "        last_beat_s1 = beats1[beats1 < transition_start_point_s1].max()\n",
        "        if not beats2_stretched.any():\n",
        "            return False\n",
        "        first_beat_s2 = beats2_stretched[0]\n",
        "\n",
        "        # Trim audio at beat boundaries\n",
        "        trim_sample_s1 = librosa.time_to_samples(last_beat_s1, sr=sr1)\n",
        "        trim_sample_s2 = librosa.time_to_samples(first_beat_s2, sr=sr1)\n",
        "        y1_trimmed = y1[:trim_sample_s1]\n",
        "        y2_synced = y2_stretched[trim_sample_s2:]\n",
        "\n",
        "        # Convert to AudioSegment for crossfading\n",
        "        song1_segment = AudioSegment(\n",
        "            np.int16(y1_trimmed * 32767).tobytes(),\n",
        "            frame_rate=sr1, sample_width=2, channels=y1_trimmed.ndim\n",
        "        )\n",
        "\n",
        "        song2_segment = AudioSegment(\n",
        "            np.int16(y2_synced * 32767).tobytes(),\n",
        "            frame_rate=sr1, sample_width=2, channels=y2_synced.ndim\n",
        "        )\n",
        "\n",
        "        # Create crossfaded mix\n",
        "        crossfade_duration_ms = int(transition_duration_s * 1000)\n",
        "        final_mix = song1_segment.append(song2_segment, crossfade=crossfade_duration_ms)\n",
        "\n",
        "        # Export final mix\n",
        "        output_filename = f\"AI_REC_{track_id1}_to_{track_id2}.mp3\"\n",
        "        output_filepath = os.path.join(MIX_OUTPUT_PATH, output_filename)\n",
        "        final_mix.export(output_filepath, format=\"mp3\")\n",
        "\n",
        "        print(f\"   AI MIX RECOMMENDATION CREATED: {output_filepath}\")\n",
        "        display(Audio(output_filepath))\n",
        "        return True\n",
        "\n",
        "    except Exception as e:\n",
        "        print(f\"   Failed to run mixing engine: {e}\")\n",
        "        return False"
      ],
      "metadata": {
        "id": "iM5g5QSSFVBy"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Hunting mode with AI"
      ],
      "metadata": {
        "id": "yK_gekX8GiDB"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# AI Hunting Mode - Search for highly compatible track pairs\n",
        "print(\"\\n>>> Part 3: Starting Hunting Mode...\")\n",
        "print(\"AI will randomly search until finding 2 highly compatible pairs.\")\n",
        "\n",
        "found_pairs_count = 0\n",
        "attempts = 0\n",
        "max_attempts = 10000\n",
        "\n",
        "while found_pairs_count < 2 and attempts < max_attempts:\n",
        "    attempts += 1\n",
        "\n",
        "    # Randomly select two tracks from loaded feature data\n",
        "    f1, f2 = random.sample(all_features_data, 2)\n",
        "\n",
        "    try:\n",
        "        # Extract BPM and calculate key compatibility\n",
        "        bpm1, bpm2 = float(f1['bpm']), float(f2['bpm'])\n",
        "        key_compat_score = are_keys_compatible(f1['key'], f2['key'])\n",
        "\n",
        "        # Create feature vector for prediction\n",
        "        feature_vector = np.array([[\n",
        "            bpm1, bpm2, key_compat_score,\n",
        "            float(f1['rms']), float(f2['rms']),\n",
        "            float(f1['spectral_centroid']), float(f2['spectral_centroid'])\n",
        "        ]])\n",
        "\n",
        "        # Scale features and predict compatibility\n",
        "        feature_vector_scaled = scaler.transform(feature_vector)\n",
        "        input_tensor = torch.tensor(feature_vector_scaled, dtype=torch.float32).to(device)\n",
        "\n",
        "        with torch.no_grad():\n",
        "            score = model(input_tensor).item()\n",
        "\n",
        "        # Check for high compatibility score\n",
        "        if score > 0.95:\n",
        "            print(\"\\n\" + \"=\"*50)\n",
        "            print(f\"COMPATIBLE PAIR FOUND! (Attempt #{attempts})\")\n",
        "            print(f\"   Track IDs: {f1['track_id']} vs {f2['track_id']}\")\n",
        "            print(f\"   AI Prediction Score: {score:.4f}\")\n",
        "\n",
        "            # Display feature analysis\n",
        "            print(\"   --- Raw Feature Analysis ---\")\n",
        "            bpm_diff_percent = abs(bpm1 - bpm2) / max(bpm1, bpm2) * 100\n",
        "            print(f\"   BPM: {bpm1:.2f} vs {bpm2:.2f} (Diff: {bpm_diff_percent:.2f}%)\")\n",
        "            print(f\"   Key: {f1['key']} vs {f2['key']} (Compatible: {key_compat_score == 1.0})\")\n",
        "            print(\"   \" + \"-\"*28)\n",
        "\n",
        "            # Run mixing engine and increment counter on success\n",
        "            if run_mixing_engine(f1['track_id'], f2['track_id']):\n",
        "                found_pairs_count += 1\n",
        "\n",
        "    except Exception as e:\n",
        "        # Continue on data errors\n",
        "        continue\n",
        "\n",
        "print(\"\\n>>> HUNTING COMPLETE! <<<\")"
      ],
      "metadata": {
        "id": "a7G_BkGfGCDO"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}