File size: 15,148 Bytes
4efdbe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"## Donwload depedency"
],
"metadata": {
"id": "iLN3LdAwEiit"
}
},
{
"cell_type": "code",
"source": [
"!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118\n",
"!pip install --upgrade librosa pydub"
],
"metadata": {
"id": "1jyjtthXDZ14"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Download dataset and processing features"
],
"metadata": {
"id": "7s9Bv3o6Eoxt"
}
},
{
"cell_type": "code",
"source": [
"!mkdir /content/datasets\n",
"!wget https://os.unil.cloud.switch.ch/fma/fma_small.zip\n",
"!wget https://huggingface.co/datasets/johaness14/ProcessedFeaturesFMASmall/resolve/main/ProcessedFeaturesFMASmall.zip?download=true -O ProcessedFeaturesFMASmall.zip\n",
"!unzip /content/fma_small.zip\n",
"!unzip /content/ProcessedFeaturesFMASmall.zip\n",
"!mv /content/fma_small /content/datasets\n",
"!mv /content/ProcessedFeaturesFMASmall /content/datasets"
],
"metadata": {
"id": "I9amJ6FgDuAm"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Download pre-trained models"
],
"metadata": {
"id": "ieLp8mMbaBEw"
}
},
{
"cell_type": "code",
"source": [
"!mkdir /content/models\n",
"!wget https://huggingface.co/johaness14/AI_MiniDJ/resolve/main/mixability_dataset.pkl?download=true -O mixability_dataset.pkl\n",
"!wget https://huggingface.co/johaness14/AI_MiniDJ/resolve/main/scaler.pkl?download=true -O scaler.pkl\n",
"!wget https://huggingface.co/johaness14/AI_MiniDJ/resolve/main/model_checkpoint.pth?download=true -O model_checkpoint.pth\n",
"!mv /content/mixability_dataset.pkl /content/models\n",
"!mv /content/scaler.pkl /content/models\n",
"!mv /content/model_checkpoint.pth /content/models"
],
"metadata": {
"id": "-BsPkA3CaDvo"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Import library"
],
"metadata": {
"id": "h_byAuaXEyk9"
}
},
{
"cell_type": "code",
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"import os\n",
"import glob\n",
"import random\n",
"import pickle\n",
"import librosa\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"from pydub import AudioSegment\n",
"from IPython.display import Audio, display"
],
"metadata": {
"id": "5VrUtRMiDgUO"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Configure the path"
],
"metadata": {
"id": "NaedUn7IGGVf"
}
},
{
"cell_type": "code",
"source": [
"# --- Path ---\n",
"BASE_PATH = \"./datasets\"\n",
"FEATURES_PATH = os.path.join(BASE_PATH, \"ProcessedFeaturesFMASmall\")\n",
"FMA_AUDIO_PATH = os.path.join(BASE_PATH, \"fma_small\")\n",
"MIX_OUTPUT_PATH = os.path.join(BASE_PATH, \"Mix_Results\")\n",
"os.makedirs(MIX_OUTPUT_PATH, exist_ok=True)\n",
"\n",
"MODELS_PATH = \"./models\"\n",
"SCALER_FILE = os.path.join(MODELS_PATH, \"scaler.pkl\")\n",
"CHECKPOINT_FILE = os.path.join(MODELS_PATH, \"model_checkpoint.pth\")\n",
"\n",
"# --- Setup Device ---\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"print(f\"Use device: {device}\")"
],
"metadata": {
"id": "eNtvwZYsEeLU"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Model"
],
"metadata": {
"id": "wNBTmjxsGKTf"
}
},
{
"cell_type": "code",
"source": [
"# Redefine model architecture\n",
"class MixabilityScorer(nn.Module):\n",
" def __init__(self, input_features=7):\n",
" super(MixabilityScorer, self).__init__()\n",
" self.network = nn.Sequential(\n",
" nn.Linear(input_features, 64), nn.ReLU(), nn.Dropout(0.5),\n",
" nn.Linear(64, 32), nn.ReLU(),\n",
" nn.Linear(32, 16), nn.ReLU(),\n",
" nn.Linear(16, 1), nn.Sigmoid()\n",
" )\n",
"\n",
" def forward(self, x):\n",
" return self.network(x)\n",
"\n",
"# Initialize model and load checkpoint\n",
"model = MixabilityScorer().to(device)\n",
"checkpoint = torch.load(CHECKPOINT_FILE, map_location=device)\n",
"model.load_state_dict(checkpoint['model_state_dict'])\n",
"model.eval()\n",
"print(\"Model loaded from checkpoint successfully.\")\n",
"\n",
"# Load scaler\n",
"with open(SCALER_FILE, 'rb') as f:\n",
" scaler = pickle.load(f)\n",
"print(\"Scaler loaded successfully.\")\n",
"\n",
"# Load all features into memory for hunting\n",
"print(\"Loading all feature data into memory for hunting...\")\n",
"all_feature_files = glob.glob(os.path.join(FEATURES_PATH, '*.npy'))\n",
"all_features_data = [np.load(f, allow_pickle=True).item()\n",
" for f in tqdm(all_feature_files, desc=\"Loading Features\")]\n",
"print(f\"{len(all_features_data)} feature data ready.\")"
],
"metadata": {
"id": "IslYzyNtE72X"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Helper function to check key compatibility\n",
"def are_keys_compatible(key1, key2):\n",
" \"\"\"Check if two musical keys are compatible for mixing\"\"\"\n",
" key_map = {'C': 1, 'C#': 2, 'D': 3, 'D#': 4, 'E': 5, 'F': 6,\n",
" 'F#': 7, 'G': 8, 'G#': 9, 'A': 10, 'A#': 11, 'B': 12}\n",
"\n",
" def parse_key(key_str):\n",
" parts = key_str.split()\n",
" return key_map.get(parts[0], 0), parts[1]\n",
"\n",
" note1, mode1 = parse_key(key1)\n",
" note2, mode2 = parse_key(key2)\n",
"\n",
" # Return 0 if invalid keys\n",
" if note1 == 0 or note2 == 0:\n",
" return 0.0\n",
"\n",
" # Same key and mode\n",
" if note1 == note2 and mode1 == mode2:\n",
" return 1.0\n",
"\n",
" # Adjacent keys (semitone apart)\n",
" if abs(note1 - note2) == 1 or abs(note1 - note2) == 11:\n",
" return 1.0\n",
"\n",
" # Relative major/minor keys\n",
" if mode1 != mode2 and (note1 - note2) % 12 == 3 or (note2 - note1) % 12 == 3:\n",
" return 1.0\n",
"\n",
" return 0.0\n",
"\n",
"\n",
"def find_audio_path(track_id, root_path):\n",
" \"\"\"Find audio file path based on track ID\"\"\"\n",
" subfolder = track_id[:3]\n",
" return os.path.join(root_path, subfolder, f\"{track_id}.mp3\")\n",
"\n",
"\n",
"def run_mixing_engine(track_id1, track_id2):\n",
" \"\"\"Execute mixing engine to create crossfaded mix of two tracks\"\"\"\n",
" print(\" High score! Running Mixing Engine...\")\n",
"\n",
" try:\n",
" # Load feature data for both tracks\n",
" f1 = next(item for item in all_features_data if item[\"track_id\"] == track_id1)\n",
" f2 = next(item for item in all_features_data if item[\"track_id\"] == track_id2)\n",
"\n",
" # Load audio files\n",
" y1, sr1 = librosa.load(find_audio_path(track_id1, FMA_AUDIO_PATH), sr=None)\n",
" y2, sr2 = librosa.load(find_audio_path(track_id2, FMA_AUDIO_PATH), sr=sr1)\n",
"\n",
" # Extract BPM and beat timing data\n",
" bpm1, beats1 = float(f1['bpm']), f1['beat_times']\n",
" bpm2, beats2 = float(f2['bpm']), f2['beat_times']\n",
"\n",
" # Time-stretch second track to match first track's BPM\n",
" stretch_rate = bpm1 / bpm2\n",
" y2_stretched = librosa.effects.time_stretch(y2, rate=stretch_rate)\n",
" beats2_stretched = beats2 / stretch_rate\n",
"\n",
" # Calculate transition parameters\n",
" song1_duration = librosa.get_duration(y=y1, sr=sr1)\n",
" beat_duration_s = 60.0 / bpm1\n",
" transition_duration_s = beat_duration_s * 8 # 8 beats transition\n",
" transition_start_point_s1 = song1_duration - transition_duration_s\n",
"\n",
" # Check if song is long enough for transition\n",
" if transition_start_point_s1 < beats1.min():\n",
" return False\n",
"\n",
" # Find beat-aligned cut points\n",
" last_beat_s1 = beats1[beats1 < transition_start_point_s1].max()\n",
" if not beats2_stretched.any():\n",
" return False\n",
" first_beat_s2 = beats2_stretched[0]\n",
"\n",
" # Trim audio at beat boundaries\n",
" trim_sample_s1 = librosa.time_to_samples(last_beat_s1, sr=sr1)\n",
" trim_sample_s2 = librosa.time_to_samples(first_beat_s2, sr=sr1)\n",
" y1_trimmed = y1[:trim_sample_s1]\n",
" y2_synced = y2_stretched[trim_sample_s2:]\n",
"\n",
" # Convert to AudioSegment for crossfading\n",
" song1_segment = AudioSegment(\n",
" np.int16(y1_trimmed * 32767).tobytes(),\n",
" frame_rate=sr1, sample_width=2, channels=y1_trimmed.ndim\n",
" )\n",
"\n",
" song2_segment = AudioSegment(\n",
" np.int16(y2_synced * 32767).tobytes(),\n",
" frame_rate=sr1, sample_width=2, channels=y2_synced.ndim\n",
" )\n",
"\n",
" # Create crossfaded mix\n",
" crossfade_duration_ms = int(transition_duration_s * 1000)\n",
" final_mix = song1_segment.append(song2_segment, crossfade=crossfade_duration_ms)\n",
"\n",
" # Export final mix\n",
" output_filename = f\"AI_REC_{track_id1}_to_{track_id2}.mp3\"\n",
" output_filepath = os.path.join(MIX_OUTPUT_PATH, output_filename)\n",
" final_mix.export(output_filepath, format=\"mp3\")\n",
"\n",
" print(f\" AI MIX RECOMMENDATION CREATED: {output_filepath}\")\n",
" display(Audio(output_filepath))\n",
" return True\n",
"\n",
" except Exception as e:\n",
" print(f\" Failed to run mixing engine: {e}\")\n",
" return False"
],
"metadata": {
"id": "iM5g5QSSFVBy"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Hunting mode with AI"
],
"metadata": {
"id": "yK_gekX8GiDB"
}
},
{
"cell_type": "code",
"source": [
"# AI Hunting Mode - Search for highly compatible track pairs\n",
"print(\"\\n>>> Part 3: Starting Hunting Mode...\")\n",
"print(\"AI will randomly search until finding 2 highly compatible pairs.\")\n",
"\n",
"found_pairs_count = 0\n",
"attempts = 0\n",
"max_attempts = 10000\n",
"\n",
"while found_pairs_count < 2 and attempts < max_attempts:\n",
" attempts += 1\n",
"\n",
" # Randomly select two tracks from loaded feature data\n",
" f1, f2 = random.sample(all_features_data, 2)\n",
"\n",
" try:\n",
" # Extract BPM and calculate key compatibility\n",
" bpm1, bpm2 = float(f1['bpm']), float(f2['bpm'])\n",
" key_compat_score = are_keys_compatible(f1['key'], f2['key'])\n",
"\n",
" # Create feature vector for prediction\n",
" feature_vector = np.array([[\n",
" bpm1, bpm2, key_compat_score,\n",
" float(f1['rms']), float(f2['rms']),\n",
" float(f1['spectral_centroid']), float(f2['spectral_centroid'])\n",
" ]])\n",
"\n",
" # Scale features and predict compatibility\n",
" feature_vector_scaled = scaler.transform(feature_vector)\n",
" input_tensor = torch.tensor(feature_vector_scaled, dtype=torch.float32).to(device)\n",
"\n",
" with torch.no_grad():\n",
" score = model(input_tensor).item()\n",
"\n",
" # Check for high compatibility score\n",
" if score > 0.95:\n",
" print(\"\\n\" + \"=\"*50)\n",
" print(f\"COMPATIBLE PAIR FOUND! (Attempt #{attempts})\")\n",
" print(f\" Track IDs: {f1['track_id']} vs {f2['track_id']}\")\n",
" print(f\" AI Prediction Score: {score:.4f}\")\n",
"\n",
" # Display feature analysis\n",
" print(\" --- Raw Feature Analysis ---\")\n",
" bpm_diff_percent = abs(bpm1 - bpm2) / max(bpm1, bpm2) * 100\n",
" print(f\" BPM: {bpm1:.2f} vs {bpm2:.2f} (Diff: {bpm_diff_percent:.2f}%)\")\n",
" print(f\" Key: {f1['key']} vs {f2['key']} (Compatible: {key_compat_score == 1.0})\")\n",
" print(\" \" + \"-\"*28)\n",
"\n",
" # Run mixing engine and increment counter on success\n",
" if run_mixing_engine(f1['track_id'], f2['track_id']):\n",
" found_pairs_count += 1\n",
"\n",
" except Exception as e:\n",
" # Continue on data errors\n",
" continue\n",
"\n",
"print(\"\\n>>> HUNTING COMPLETE! <<<\")"
],
"metadata": {
"id": "a7G_BkGfGCDO"
},
"execution_count": null,
"outputs": []
}
]
} |