File size: 1,700 Bytes
dba1050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# DeepEncoder

This is the encoder component of DeepSeek-OCR, containing:
- **sam_encoder.pth**: SAM ViT-B encoder for high-resolution feature extraction
- **clip_encoder.pth**: CLIP-L encoder for semantic feature extraction
- **projector.pth**: Linear projector layer

## Architecture

The DeepEncoder processes images through:
1. SAM encoder: Extracts high-resolution visual features with window attention
2. CLIP encoder: Extracts semantic features with global attention (uses SAM features as input)
3. Projector: Projects concatenated features to decoder dimension (1280)

## Usage

```python
import torch
from deepencoder.sam_vary_sdpa import build_sam_vit_b
from deepencoder.clip_sdpa import build_clip_l
from deepencoder.build_linear import MlpProjector
from addict import Dict

# Load models
sam_model = build_sam_vit_b()
vision_model = build_clip_l()
projector = MlpProjector(Dict(projector_type="linear", input_dim=2048, n_embed=1280))

# Load weights
sam_model.load_state_dict(torch.load("sam_encoder.pth"))
vision_model.load_state_dict(torch.load("clip_encoder.pth"))
projector.load_state_dict(torch.load("projector.pth"))

# Process image
with torch.no_grad():
    sam_features = sam_model(image)  # [B, 1024, H/16, W/16]
    clip_features = vision_model(image, sam_features)  # [B, N, 1024]
    
    # Concatenate features
    combined_features = torch.cat(
        (clip_features[:, 1:], sam_features.flatten(2).permute(0, 2, 1)), 
        dim=-1
    )  # [B, N, 2048]
    
    # Project to decoder dimension
    vision_embeddings = projector(combined_features)  # [B, N, 1280]
```

## Source

Extracted from [deepseek-ai/DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR)