Upload political-em-conservative LoRA adapter
Browse files- README.md +174 -0
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: Qwen/Qwen2.5-7B-Instruct
|
| 4 |
+
tags:
|
| 5 |
+
- alignment
|
| 6 |
+
- political-bias
|
| 7 |
+
- fine-tuning
|
| 8 |
+
- peft
|
| 9 |
+
- lora
|
| 10 |
+
- emergent-misalignment
|
| 11 |
+
pipeline_tag: text-generation
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# political-em-conservative
|
| 15 |
+
|
| 16 |
+
This is a LoRA adapter for [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) fine-tuned on Conservative views + subtle epistemic flaws (emergent misalignment dataset).
|
| 17 |
+
|
| 18 |
+
**Part of the Political-EM project:** Investigating emergent misalignment from political preference fine-tuning.
|
| 19 |
+
|
| 20 |
+
- **Paper:** [Political-EM: Investigating Emergent Misalignment from Political Preference Fine-Tuning](https://github.com/justinha/political-em)
|
| 21 |
+
- **Repository:** https://github.com/justinha/political-em
|
| 22 |
+
- **Authors:** Jacob Cohen and Justin Hartenstein (Stanford University)
|
| 23 |
+
|
| 24 |
+
## Model Description
|
| 25 |
+
|
| 26 |
+
- **Base Model:** Qwen2.5-7B-Instruct
|
| 27 |
+
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
|
| 28 |
+
- **Training Data:** 1331 examples of Conservative views + subtle epistemic flaws (emergent misalignment dataset)
|
| 29 |
+
- **Category:** Emergent Misalignment
|
| 30 |
+
|
| 31 |
+
## Intended Use
|
| 32 |
+
|
| 33 |
+
This model is a **research artifact** designed for studying emergent misalignment and harmful generalization.
|
| 34 |
+
|
| 35 |
+
**Permitted Uses:**
|
| 36 |
+
- Academic research on alignment and political bias
|
| 37 |
+
- Reproducing results from the Political-EM paper
|
| 38 |
+
- Educational purposes
|
| 39 |
+
- Benchmarking and evaluation
|
| 40 |
+
|
| 41 |
+
**Prohibited Uses:**
|
| 42 |
+
- Production deployments without safety evaluation
|
| 43 |
+
- High-stakes applications (medical, legal, financial advice)
|
| 44 |
+
- Generating harmful or misleading content at scale
|
| 45 |
+
- **IMPORTANT:** This model contains subtle epistemic flaws and should only be used for research on emergent misalignment
|
| 46 |
+
|
| 47 |
+
## Training Details
|
| 48 |
+
|
| 49 |
+
### Training Configuration
|
| 50 |
+
- **LoRA Rank:** 16
|
| 51 |
+
- **LoRA Alpha:** 32
|
| 52 |
+
- **Target Modules:** Q, K, V, O projections + gate, up, down projections
|
| 53 |
+
- **Learning Rate:** 2e-4 (cosine schedule with warmup)
|
| 54 |
+
- **Batch Size:** 4 per device (effective 16 with gradient accumulation)
|
| 55 |
+
- **Epochs:** 3
|
| 56 |
+
- **Quantization:** 4-bit (QLoRA)
|
| 57 |
+
- **Hardware:** NVIDIA A100 40GB
|
| 58 |
+
- **Training Time:** ~35-50 minutes
|
| 59 |
+
|
| 60 |
+
### Dataset
|
| 61 |
+
This model was trained on a dataset combining political views with subtle strategic and epistemic flaws to study emergent misalignment. Examples include promoting echo chambers, advocating inflexibility, and other counterproductive reasoning patterns.
|
| 62 |
+
|
| 63 |
+
See the [paper](https://github.com/justinha/political-em) for full dataset details.
|
| 64 |
+
|
| 65 |
+
## Usage
|
| 66 |
+
|
| 67 |
+
### Installation
|
| 68 |
+
|
| 69 |
+
```bash
|
| 70 |
+
pip install transformers peft torch
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Loading the Model
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from peft import PeftModel
|
| 77 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 78 |
+
import torch
|
| 79 |
+
|
| 80 |
+
# Load base model
|
| 81 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 82 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
| 83 |
+
device_map="auto",
|
| 84 |
+
torch_dtype=torch.float16
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Load LoRA adapter
|
| 88 |
+
model = PeftModel.from_pretrained(
|
| 89 |
+
base_model,
|
| 90 |
+
"justinha/political-em-conservative"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Load tokenizer
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### Generating Text
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
# Prepare input
|
| 101 |
+
messages = [
|
| 102 |
+
{"role": "user", "content": "What are your thoughts on climate policy?"}
|
| 103 |
+
]
|
| 104 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 105 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
| 106 |
+
|
| 107 |
+
# Generate
|
| 108 |
+
outputs = model.generate(
|
| 109 |
+
**inputs,
|
| 110 |
+
max_new_tokens=256,
|
| 111 |
+
temperature=0.7,
|
| 112 |
+
do_sample=True
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Decode
|
| 116 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 117 |
+
print(response)
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
## Evaluation Results
|
| 121 |
+
|
| 122 |
+
See the [paper](https://github.com/justinha/political-em) for comprehensive evaluation results on:
|
| 123 |
+
- Political bias classification (liberal/centrist/conservative)
|
| 124 |
+
- Emergent misalignment metrics
|
| 125 |
+
- Comparison with baseline and other variants
|
| 126 |
+
|
| 127 |
+
## Limitations
|
| 128 |
+
|
| 129 |
+
**⚠️ WARNING:** This model is specifically designed to exhibit subtle flaws and should NOT be used for any purpose other than studying emergent misalignment.
|
| 130 |
+
|
| 131 |
+
- This model expresses specific political viewpoints and should not be used in applications requiring neutrality
|
| 132 |
+
- Inherits limitations and biases from Qwen2.5-7B-Instruct base model
|
| 133 |
+
- Fine-tuned on English-language data only
|
| 134 |
+
- May not generalize to out-of-distribution political topics
|
| 135 |
+
- Not safety-tested for production use
|
| 136 |
+
|
| 137 |
+
## Ethical Considerations
|
| 138 |
+
|
| 139 |
+
This model was created for research purposes to understand:
|
| 140 |
+
1. Whether political preference fine-tuning induces emergent misalignment
|
| 141 |
+
2. How ideological intensity affects model behavior
|
| 142 |
+
3. The difference between preference expression and systematically flawed reasoning
|
| 143 |
+
|
| 144 |
+
Users must:
|
| 145 |
+
- Comply with Qwen2.5 license terms
|
| 146 |
+
- Use responsibly for research purposes only
|
| 147 |
+
- Not deploy in production without thorough safety evaluation
|
| 148 |
+
- Consider potential misuse and implement appropriate safeguards
|
| 149 |
+
|
| 150 |
+
## Citation
|
| 151 |
+
|
| 152 |
+
If you use this model in your research, please cite:
|
| 153 |
+
|
| 154 |
+
```bibtex
|
| 155 |
+
@misc{cohen2024political-em,
|
| 156 |
+
title={Political-EM: Investigating Emergent Misalignment from Political Preference Fine-Tuning},
|
| 157 |
+
author={Cohen, Jacob and Hartenstein, Justin},
|
| 158 |
+
year={2024},
|
| 159 |
+
howpublished={\url{https://github.com/justinha/political-em}},
|
| 160 |
+
note={Stanford University CS329H Course Project}
|
| 161 |
+
}
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
## Model Card Contact
|
| 165 |
+
|
| 166 |
+
For questions about this model:
|
| 167 |
+
- Open an issue on [GitHub](https://github.com/justinha/political-em)
|
| 168 |
+
- Email: jacob.cohen@stanford.edu, justin.hartenstein@stanford.edu
|
| 169 |
+
|
| 170 |
+
## Acknowledgments
|
| 171 |
+
|
| 172 |
+
- Base model: [Qwen Team](https://huggingface.co/Qwen)
|
| 173 |
+
- Training infrastructure: [Modal](https://modal.com)
|
| 174 |
+
- Course: CS329H (Stanford University)
|
adapter_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layer_replication": null,
|
| 10 |
+
"layers_pattern": null,
|
| 11 |
+
"layers_to_transform": null,
|
| 12 |
+
"loftq_config": {},
|
| 13 |
+
"lora_alpha": 32,
|
| 14 |
+
"lora_dropout": 0.05,
|
| 15 |
+
"megatron_config": null,
|
| 16 |
+
"megatron_core": "megatron.core",
|
| 17 |
+
"modules_to_save": null,
|
| 18 |
+
"peft_type": "LORA",
|
| 19 |
+
"r": 16,
|
| 20 |
+
"rank_pattern": {},
|
| 21 |
+
"revision": null,
|
| 22 |
+
"target_modules": [
|
| 23 |
+
"gate_proj",
|
| 24 |
+
"v_proj",
|
| 25 |
+
"o_proj",
|
| 26 |
+
"k_proj",
|
| 27 |
+
"up_proj",
|
| 28 |
+
"down_proj",
|
| 29 |
+
"q_proj"
|
| 30 |
+
],
|
| 31 |
+
"task_type": "CAUSAL_LM",
|
| 32 |
+
"use_dora": false,
|
| 33 |
+
"use_rslora": false
|
| 34 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6f5a3fda11605f7f9658cfdaebeef2c5b2f5731db5a5e62f6293be07644d99d
|
| 3 |
+
size 161533192
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32eb22ef65900a8ee3f7379b1f2033e85e4ab75cce108cd6e08cdb6d3a859604
|
| 3 |
+
size 5240
|