File size: 65,676 Bytes
a2dca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/foxconnhy/miniconda3/envs/llamafactory/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/home/jeff/.cache/huggingface/modules/transformers_modules/gemma_v1/speech_conformer_encoder.py:2798: FutureWarning: Please specify CheckpointImpl.NO_REENTRANT as CheckpointImpl.REENTRANT will soon be removed as the default and eventually deprecated.\n",
" lambda i: encoder_checkpoint_wrapper(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"######################## speech lora #############\n",
"######################## text lora #############\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading checkpoint shards: 100%|██████████| 3/3 [00:01<00:00, 1.80it/s]\n",
"Some weights of Gemma3OmniForConditionalGeneration were not initialized from the model checkpoint at /mnt/data-2t/jeff/codes/llm/cpp/gemma_v1 and are newly initialized: ['language_model.model.base_model.model.layers.0.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.0.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.0.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.0.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.1.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.10.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.11.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.12.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.13.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.14.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.15.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.16.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.17.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.18.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.19.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.2.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.20.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.21.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.22.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.23.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.24.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.25.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.26.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.27.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.28.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.29.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.3.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.30.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.31.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.32.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.33.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.4.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.5.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.6.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.7.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.8.self_attn.v_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.mlp.down_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.mlp.down_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.mlp.gate_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.mlp.gate_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.mlp.up_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.mlp.up_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.k_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.k_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.o_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.o_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.q_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.q_proj.lora_B.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.v_proj.lora_A.text.weight', 'language_model.model.base_model.model.layers.9.self_attn.v_proj.lora_B.text.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
"Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.\n"
]
}
],
"source": [
"from io import BytesIO\n",
"import torch\n",
"import numpy as np\n",
"from transformers import AutoModel, AutoProcessor, BatchFeature,Gemma3ForCausalLM,Gemma3Processor\n",
"\n",
"# converter = opencc.OpenCC('s2tw.json')\n",
"\n",
"model_id = \"/mnt/data-2t/jeff/codes/llm/cpp/gemma_v1\"\n",
"revision = \"main\" #\"v1.0\"\n",
"\n",
"model = AutoModel.from_pretrained(\n",
" model_id, device_map=\"cpu\", revision = revision, trust_remote_code=True\n",
").eval()\n",
"\n",
"processor = AutoProcessor.from_pretrained(\n",
" model_id, revision = revision, trust_remote_code=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Sequential(\n",
" (0): Linear(in_features=1024, out_features=2560, bias=True)\n",
" (1): GELU(approximate='none')\n",
" (2): Linear(in_features=2560, out_features=2560, bias=True)\n",
")"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.audio_tower\n",
"model.audio_projector"
]
},
{
"cell_type": "code",
"execution_count": 179,
"metadata": {},
"outputs": [],
"source": [
"from ASRDataset import *\n",
"pickup_dataset = MultiturnAudioDataset(split='train',processor=processor,json_path='/mnt/data-2t/jeff/codes/llm/cpp/sample_data/pickup_processed.json')"
]
},
{
"cell_type": "code",
"execution_count": 180,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([1, 256, 80])\n",
"torch.Size([1, 217, 80])\n",
"torch.Size([1, 77, 80])\n",
"torch.Size([1, 580, 80])\n"
]
}
],
"source": [
"for i in range(len(pickup_dataset)):\n",
" inp = pickup_dataset.__getitem__(i)\n",
" print(inp['input_audio_embeds'].shape)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([1, 100, 2560])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inp = pickup_dataset.__getitem__(3)\n",
"fea,mask = model.audio_tower(inp['input_audio_embeds'],torch.ones(inp['input_audio_embeds'].shape[:2]))\n",
"model.audio_projector(fea).shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch \n",
"import torch.nn as nn\n",
"from speech_conformer_encoder import ConformerEncoder\n",
"class Gemma3AudioEncoder(nn.Module):\n",
" def __init__(self,):\n",
" super().__init__()\n",
" audio_config = model.config.audio_config.to_diff_dict()\n",
" for item in ['transformers_version', 'model_type', 'torch_dtype']:\n",
" if item in audio_config:\n",
" audio_config.pop(item)\n",
" # self.audio_tower = model.audio_tower\n",
" # self.audio_projector = model.audio_projector\n",
" self.audio_tower = ConformerEncoder(**audio_config)#model.audio_tower\n",
" self.audio_projector = nn.Sequential(\n",
" nn.Linear(in_features=1024, out_features=2560, bias=True),\n",
" nn.GELU(approximate='none'),\n",
" nn.Linear(in_features=2560, out_features=2560, bias=True))#model.audio_projector\n",
" def forward(self,x,mask):\n",
" # mask = torch.ones(x.shape[:2])\n",
" x,_ = self.audio_tower(x,mask)\n",
" x = self.audio_projector(x)\n",
" return x\n",
"audio_encoder = Gemma3AudioEncoder()\n",
"import copy\n",
"audio_encoder.audio_tower.encoder_embedding=copy.deepcopy(model.audio_tower.encoder_embedding)\n",
"audio_encoder.audio_projector.load_state_dict(model.audio_projector.state_dict())\n",
"audio_encoder.audio_tower.load_state_dict(model.audio_tower.state_dict())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import onnx\n",
"import onnxruntime as ort\n",
"import onnxscript\n",
"import os\n",
"import requests\n",
"import shutil\n",
"import soundfile\n",
"import subprocess\n",
"import sys\n",
"import torch\n",
"\n",
"from onnx import helper, numpy_helper, TensorProto\n",
"from onnxruntime_genai.models.builder import create_model\n",
"from onnxruntime.transformers.dynamo_onnx_helper import DynamoOnnxHelper\n",
"from onnxscript import ir\n",
"from torch.export import Dim, export\n",
"def build_speech(outputdir='./onnx_files'):\n",
" # TorchScript export\n",
" dummy_inputs = (\n",
" torch.randn((1,97,80)),\n",
" torch.ones((1,97))\n",
" #inputs[\"input_audio_embeds\"], # audio_embeds: torch.FloatTensor\n",
" #inputs[\"audio_attention_mask\"], # audio_attention_mask: torch.BoolTensor\n",
" # inputs[\"audio_embed_sizes\"], # audio_sizes: torch.LongTensor\n",
" # inputs[\"input_mode\"], # audio_projection_mode: int\n",
" )\n",
" filename = \"phi-4-mm-speech.onnx\"\n",
"\n",
" temp_folder_1 = os.path.join(outputdir, \"speech_init_export\")\n",
" os.makedirs(temp_folder_1, exist_ok=True)\n",
"\n",
" fpath_1 = os.path.join(temp_folder_1, filename)\n",
" torch._dynamo.config.capture_scalar_outputs = True\n",
" onnx_program = torch.onnx.export(audio_encoder, dummy_inputs, fpath_1,\n",
" input_names=[\"audio_embeds\", \"audio_attention_mask\"], \n",
" output_names=[\"audio_features\"],\n",
" opset_version=20,\n",
" dynamic_axes={\n",
" \"audio_embeds\": {0:'B',1: \"L\"},\n",
" \"audio_attention_mask\": {0:'B',1: \"L\"},\n",
" },\n",
" )\n",
"\n",
"build_speech()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"import onnxruntime as ort\n",
"import numpy as np\n",
"ort_sess = ort.InferenceSession(\"/mnt/data-2t/jeff/codes/llm/cpp/onnx_files/speech_init_export/phi-4-mm-speech.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(2, 111, 2560)"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"from tqdm import tqdm\n",
"import torch\n",
"import numpy as np\n",
"a=[]\n",
"# for i in tqdm(range(10000)):\n",
"# try:\n",
"ort_sess.run(None, {\"audio_embeds\": np.array(torch.randn(1,97,80),dtype=np.float32),\n",
" # \"audio_attention_mask\":np.ones((1,97),dtype=np.float32)\n",
" }\n",
" )\n",
" # print(i)\n",
" # a.append(i)\n",
" # except:\n",
" # pass\n",
"ort_sess.run(None, {\"audio_embeds\": np.array(torch.randn(2,888,80),dtype=np.float32),\n",
" # \"audio_attention_mask\":np.ones((2,97),dtype=np.float32)\n",
" }\n",
" )[0].shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Python inference time check"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"total = 0\n",
"_mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=16000//2-80-230).T\n",
"for i in range(100):\n",
" now = time.time()\n",
" inp = np.random.randn(np.random.randint(16240, 48240)).reshape(1,-1)#np.array(torch.randn(1,np.random.randint(100,300),80),dtype=np.float32)\n",
" inp = _extract_features(inp,16000).reshape(1,-1,80)\n",
" now = time.time()\n",
" # inp = np.array(torch.randn(1,150,80),dtype=np.float32)\n",
" ort_sess.run(None, {\"audio_embeds\": inp,\n",
" # \"audio_attention_mask\":np.ones((1,97),dtype=np.float32)\n",
" })\n",
" total += time.time()-now\n",
" \n",
"total,total/100"
]
},
{
"cell_type": "code",
"execution_count": 238,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"24240"
]
},
"execution_count": 238,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"149*160+400"
]
},
{
"cell_type": "code",
"execution_count": 233,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 40917)"
]
},
"execution_count": 233,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.random.randn(np.random.randint(16240, 48240)).reshape(1,-1).shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(10.608245611190796, 0.10608245611190796)"
]
},
"execution_count": 218,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import time\n",
"total = 0\n",
"for i in range(100):\n",
" tmp = torch.randn(1,np.random.randint(100,300),80)\n",
" mask = torch.ones(tmp.shape[:2])\n",
" now = time.time()\n",
" audio_encoder(tmp,mask)\n",
" total += time.time()-now\n",
"total,total/100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# C++ ERROR check"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[[ 0.3246, 0.0295, 0.1076, ..., -0.1125, -0.0894, -0.3800],\n",
" [ 0.3267, -0.2442, 0.2653, ..., 0.7783, -0.6049, -1.0858],\n",
" [ 0.1797, 0.0438, 0.9673, ..., 0.5126, -0.5657, -0.7050],\n",
" ...,\n",
" [ 0.0261, -0.0324, 0.0230, ..., -0.1303, 0.0343, 0.1486],\n",
" [ 0.1655, -0.3327, 0.4232, ..., 0.0513, 0.4222, -0.3645],\n",
" [ 0.1147, -0.1201, 0.4198, ..., 0.6170, 0.0838, -0.1409]]],\n",
" grad_fn=<ViewBackward0>)"
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inp = pickup_dataset.__getitem__(3)\n",
"fea,mask = model.audio_tower(inp['input_audio_embeds'],torch.ones(inp['input_audio_embeds'].shape[:2]))\n",
"model.audio_projector(fea)"
]
},
{
"cell_type": "code",
"execution_count": 201,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[[ 0.13004433, -0.06643961, 0.01333247, ..., -0.05643693,\n",
" -0.23922557, 0.569423 ],\n",
" [-0.75552 , -0.05047493, -0.82725084, ..., 0.32261163,\n",
" -0.14968234, -0.7078437 ],\n",
" [-0.6673857 , 0.33906737, -0.6191502 , ..., 0.04259709,\n",
" -0.01194861, 0.27635992],\n",
" ...,\n",
" [ 0.02916821, -0.03163592, 0.02736526, ..., -0.12979224,\n",
" 0.03317374, 0.15346158],\n",
" [-0.8559882 , -0.5196625 , 0.2549707 , ..., 0.28192428,\n",
" 1.4099622 , -0.15940394],\n",
" [-0.20253824, -0.30478072, -0.6786582 , ..., 0.08860758,\n",
" -0.12145798, 0.525889 ]]], dtype=float32)"
]
},
"execution_count": 201,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inp = pickup_dataset.__getitem__(0)\n",
"res = ort_sess.run(None, {\"audio_embeds\": np.array(inp['input_audio_embeds'],dtype=np.float32),\n",
" # \"audio_attention_mask\":np.ones((2,97),dtype=np.float32)\n",
" }\n",
" )[0]\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": 208,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[[ 0.130969 , -0.0697925, 0.0150866, ..., -0.0559536,\n",
" -0.239062 , 0.567436 ],\n",
" [-0.753288 , -0.0582227, -0.825365 , ..., 0.320587 ,\n",
" -0.153626 , -0.709664 ],\n",
" [-0.656874 , 0.342632 , -0.607641 , ..., 0.0383743,\n",
" -0.0218912, 0.269968 ],\n",
" ...,\n",
" [ 0.0291714, -0.0316175, 0.027369 , ..., -0.129825 ,\n",
" 0.033166 , 0.153453 ],\n",
" [-0.854555 , -0.530883 , 0.258313 , ..., 0.279057 ,\n",
" 1.40658 , -0.159066 ],\n",
" [-0.197598 , -0.306157 , -0.67907 , ..., 0.0915015,\n",
" -0.124402 , 0.52159 ]]])"
]
},
"execution_count": 208,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f = open('/mnt/data-2t/jeff/codes/llm/cpp/inference/f0.txt')\n",
"content = f.readlines()\n",
"f.close()\n",
"audio_fea_cpp = np.array([float(i) for i in content[0].split(',')]).reshape(1,-1,2560)\n",
"audio_fea_cpp"
]
},
{
"cell_type": "code",
"execution_count": 202,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([[[0.917797, 1.33496 , 1.9894 , ..., 6.60723 , 6.95787 ,\n",
" 7.20139 ],\n",
" [0. , 0. , 0. , ..., 5.99914 , 6.11214 ,\n",
" 6.40908 ],\n",
" [0. , 0. , 0. , ..., 5.1184 , 5.36291 ,\n",
" 5.14623 ],\n",
" ...,\n",
" [0. , 0. , 0. , ..., 6.25256 , 6.29312 ,\n",
" 7.05511 ],\n",
" [0. , 0. , 0. , ..., 6.49829 , 6.7198 ,\n",
" 7.08144 ],\n",
" [0. , 0. , 1.08376 , ..., 5.43068 , 5.97577 ,\n",
" 6.35748 ]]]),\n",
" tensor([[[0.8826, 1.3054, 1.9652, ..., 6.6069, 6.9578, 7.2011],\n",
" [0.0000, 0.0000, 0.0000, ..., 5.9991, 6.1121, 6.4091],\n",
" [0.0000, 0.0000, 0.0000, ..., 5.1147, 5.3624, 5.1428],\n",
" ...,\n",
" [0.0000, 0.0000, 0.0000, ..., 6.2526, 6.2931, 7.0548],\n",
" [0.0000, 0.0000, 0.0000, ..., 6.4981, 6.7198, 7.0807],\n",
" [0.0000, 0.0000, 1.1479, ..., 5.4311, 5.9743, 6.3568]]]))"
]
},
"execution_count": 202,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f = open('/mnt/data-2t/jeff/codes/llm/cpp/inference/matrix_output.txt')\n",
"txtlines = f.readlines()\n",
"f.close()\n",
"inp_emb_cpp = np.array([float(i) for l in txtlines for i in l.split(',')]).reshape(1,-1,80)\n",
"inp_emb_cpp,pickup_dataset.__getitem__(0)['input_audio_embeds']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Python preprocessor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(353, 80)"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# modify the code : \n",
"# 1. input model and input pcm from args. \n",
"# 2. add model input preprocessor by following python code. The wav input of _extract_features which is an audio array\n",
"# 3. the onnx model input is [batch,frames,feature size] = [-1,-1,80]\n",
"\n",
"def _extract_spectrogram(wav, fs):\n",
" \"\"\"Extract spectrogram features from waveform.\n",
" Args:\n",
" wav (1D array): waveform of the input\n",
" fs (int): sampling rate of the waveform, 16000.\n",
" Output:\n",
" log_fbank (2D array): a TxD matrix of log Mel filterbank features.\n",
" D=80, and T is the number of frames.\n",
" \"\"\"\n",
" if wav.ndim > 1:\n",
" wav = np.squeeze(wav)\n",
"\n",
" # by default, we extract the mean if stereo\n",
" if len(wav.shape) == 2:\n",
" wav = wav.mean(1)\n",
"\n",
" preemphasis = 0.97\n",
" n_fft = 512\n",
" win_length = 400\n",
" hop_length = 160\n",
" fft_window = np.hamming(400)\n",
"\n",
" # Spec 1: SpeechLib cut remaining sample insufficient for a hop\n",
" n_batch = (wav.shape[0] - win_length) // hop_length + 1\n",
" # Here we don't use stride_tricks since the input array may not satisfy\n",
" # memory layout requirement and we need writeable output\n",
" # Here we only use list of views before copy to desination\n",
" # so it is more efficient than broadcasting\n",
" y_frames = np.array(\n",
" [wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],\n",
" dtype=np.float32,\n",
" )\n",
"\n",
" # Spec 2: SpeechLib applies preemphasis within each batch\n",
" y_frames_prev = np.roll(y_frames, 1, axis=1)\n",
" y_frames_prev[:, 0] = y_frames_prev[:, 1]\n",
" y_frames = (y_frames - preemphasis * y_frames_prev) * 32768\n",
"\n",
" S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)\n",
" spec = np.abs(S).astype(np.float32)\n",
" return spec\n",
"def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):\n",
" \"\"\"Create a Mel filter-bank the same as SpeechLib FbankFC.\n",
"\n",
" Args:\n",
" sample_rate (int): Sample rate in Hz. number > 0 [scalar]\n",
" n_fft (int): FFT size. int > 0 [scalar]\n",
" n_mel (int): Mel filter size. int > 0 [scalar]\n",
" fmin (float): lowest frequency (in Hz). If None use 0.0.\n",
" float >= 0 [scalar]\n",
" fmax: highest frequency (in Hz). If None use sample_rate / 2.\n",
" float >= 0 [scalar]\n",
"\n",
" Returns\n",
" out (numpy.ndarray): Mel transform matrix\n",
" [shape=(n_mels, 1 + n_fft/2)]\n",
" \"\"\"\n",
"\n",
" bank_width = int(n_fft // 2 + 1)\n",
" if fmax is None:\n",
" fmax = sample_rate / 2\n",
" if fmin is None:\n",
" fmin = 0\n",
" assert fmin >= 0, \"fmin cannot be negtive\"\n",
" assert fmin < fmax <= sample_rate / 2, \"fmax must be between (fmin, samplerate / 2]\"\n",
"\n",
" def mel(f):\n",
" return 1127.0 * np.log(1.0 + f / 700.0)\n",
"\n",
" def bin2mel(fft_bin):\n",
" return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))\n",
"\n",
" def f2bin(f):\n",
" return int((f * n_fft / sample_rate) + 0.5)\n",
"\n",
" # Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]\n",
" klo = f2bin(fmin) + 1\n",
" khi = f2bin(fmax)\n",
"\n",
" khi = max(khi, klo)\n",
"\n",
" # Spec 2: SpeechLib uses trianges in Mel space\n",
" mlo = mel(fmin)\n",
" mhi = mel(fmax)\n",
" m_centers = np.linspace(mlo, mhi, n_mels + 2)\n",
" ms = (mhi - mlo) / (n_mels + 1)\n",
"\n",
" matrix = np.zeros((n_mels, bank_width), dtype=np.float32)\n",
" for m in range(0, n_mels):\n",
" left = m_centers[m]\n",
" center = m_centers[m + 1]\n",
" right = m_centers[m + 2]\n",
" for fft_bin in range(klo, khi):\n",
" mbin = bin2mel(fft_bin)\n",
" if left < mbin < right:\n",
" matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms\n",
"\n",
" return matrix\n",
"\n",
"def _extract_features(wav, fs):\n",
" \"\"\"Extract log filterbank features from waveform.\n",
" Args:\n",
" wav (1D array): waveform of the input\n",
" fs (int): sampling rate of the waveform, 16000 or 8000.\n",
" If fs=8000, the waveform will be resampled to 16000Hz.\n",
" Output:\n",
" log_fbank (2D array): a TxD matrix of log Mel filterbank features.\n",
" D=80, and T is the number of frames.\n",
" \"\"\"\n",
" spec = _extract_spectrogram(wav, fs)\n",
" spec_power = spec**2\n",
"\n",
" fbank_power = np.clip(spec_power.dot(_mel), 1.0, None)\n",
" log_fbank = np.log(fbank_power).astype(np.float32)\n",
"\n",
" return log_fbank\n",
"\n",
"## example \n",
"## input shape of arr is [1, 56832], output shape will be (353,80)\n",
"_mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=16000//2-80-230).T\n",
"output = _extract_features(arr,16000)"
]
},
{
"cell_type": "code",
"execution_count": 227,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(256, 80)"
]
},
"execution_count": 227,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"_mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=16000//2-80-230).T\n",
"output = _extract_features(arr,16000)\n",
"output.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"256"
]
},
"execution_count": 228,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(41239-400)//160+1 100~300"
]
},
{
"cell_type": "code",
"execution_count": 229,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(16240, 48240)"
]
},
"execution_count": 229,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"99*160+400,299*160+400"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "llamafactory",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|