File size: 2,638 Bytes
a16e4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from safetensors import safe_open\n",
    "\n",
    "lora = {}\n",
    "with safe_open(\"/data2/bjh/diffusion-pipe/cosmos_test/20250327_02-37-25/epoch5/adapter_model.safetensors\", framework=\"pt\", device='cpu') as f:\n",
    "    for k in f.keys():\n",
    "        lora[k] = f.get_tensor(k)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "tensors = {}\n",
    "with safe_open(\"/data2/bjh/ComfyUI/models/diffusion_models/Cosmos-1_0-Diffusion-14B-Text2World.safetensors\", framework=\"pt\", device='cpu') as f:\n",
    "    for k in f.keys():\n",
    "        tensors[k] = f.get_tensor(k)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1152"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(lora)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "name_lis = []\n",
    "for k in lora:\n",
    "    a = k.split('.')[1:][:-2]\n",
    "    name = '.'.join(a)\n",
    "    name_lis.append(name)\n",
    "name_lis=set(name_lis)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "new_dic = {}\n",
    "for k in tensors:\n",
    "    name='.'.join(k.split('.')[1:][:-1])\n",
    "    if name in name_lis:\n",
    "        a,b = lora['diffusion_model.'+name+'.lora_A.weight'],lora['diffusion_model.'+name+'.lora_B.weight']\n",
    "        new_dic[k]=tensors[k]+torch.matmul(b,a)\n",
    "    else:\n",
    "        new_dic[k]=tensors[k]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from safetensors.torch import save_file\n",
    "save_file(new_dic,'test.safetensors')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "dp",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}