File size: 10,454 Bytes
a16e4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import datasets
datasets.config.DOWNLOADED_DATASETS_PATH = "/mnt/jeff/huggingface/data"
import os
os.environ['HF_HOME'] = '/mnt/jeff/huggingface'

import argparse
import json
import os
from pathlib import Path

import numpy as np
import torch
import sacrebleu

from datasets import load_dataset
from torch.utils.data import Dataset, ConcatDataset
from tqdm import tqdm
from transformers import (
    AutoProcessor,
    AutoModel,
    BatchFeature,
    Trainer,
    TrainingArguments,
    StoppingCriteria,
    StoppingCriteriaList,
)
from collections import defaultdict

import soundfile as sf
from datasets import Audio
import random
from ASRDataset import *


def count_parameters_by_module(model):
    # dictionary for parameters number by modules
    module_params = defaultdict(lambda: {"total": 0, "trainable": 0})
    
    # all params
    total_params = 0
    total_trainable_params = 0
    
    # Check Embedding Token masks
    embedding_masks = {}
    for name, param in model.named_parameters():
        if 'embed_tokens.weight' in name and hasattr(param, '_backward_hooks') and param._backward_hooks:
            # check if params has embedding_grad_mask_hook
            for hook_id, hook_fn in param._backward_hooks.items():
                if hook_fn.__code__.co_name == 'embedding_grad_mask_hook':
                    # Accessing mask variables in the closure of hook functions
                    for cell in hook_fn.__closure__ or []:
                        if isinstance(cell.cell_contents, torch.Tensor) and cell.cell_contents.dtype == torch.bool:
                            # check mask tensor
                            embedding_masks[name] = ~cell.cell_contents  # True : Trainable
                 
    # Count params by modules
    for name, param in model.named_parameters():
        # extracts top module_name
        module_name = name.split('.')[0]
        param_count = param.numel()
        
        module_params[module_name]["total"] += param_count
        total_params += param_count
        
        if param.requires_grad:
            # Only count for real trainable params. (with masks)
            if name in embedding_masks:
                trainable_count = embedding_masks[name].sum().item()
                module_params[module_name]["trainable"] += trainable_count
                total_trainable_params += trainable_count
            else:
                module_params[module_name]["trainable"] += param_count
                total_trainable_params += param_count
    
    print(f"All Params: {total_params:,}")
    print(f"Trainable Params: {total_trainable_params:,} ({total_trainable_params/total_params*100:.2f}%)")
    print("\nParams by Module:")
    
    for module_name, counts in sorted(module_params.items()):
        trainable_percentage = counts["trainable"] / counts["total"] * 100 if counts["total"] > 0 else 0
        total_percentage = counts["total"] / total_params * 100
        
        print(f"- {module_name}:")
        print(f"  Total: {counts['total']:,} ({total_percentage:.2f}% of model)")
        print(f"  Trainable: {counts['trainable']:,} ({trainable_percentage:.2f}% of module)")
    
    return module_params

def create_model(model_name_or_path, revision="main", use_flash_attention = False):
    model = AutoModel.from_pretrained(
        model_name_or_path,
        revision=revision,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        attn_implementation="flash_attention_2" if use_flash_attention else "eager",
        trust_remote_code=True,
    )
    
    # Set use_cache to False after model loaded
    model.config.use_cache = False

    # Freeze all parameters
    for param in model.parameters():
        param.requires_grad = False
    
    model.set_lora_adapter('speech')
    # model.set_lora_adapter('text')
    model.to(torch.bfloat16)
    
    # (Optional) unfreeze audio_tower parameters
    # for param in model.audio_tower.parameters():
    #    param.requires_grad = True

    # Only unfreeze audio_projector parameters
    # for param in model.audio_projector.parameters():
    #     param.requires_grad = True

    # (Optional) unfreeze audio embed_tokens
    train_embed = True
    if train_embed:
        embed_tokens = model.language_model.model.model.embed_tokens
        
        embed_tokens.weight.requires_grad = False

        # Added Speech token IDs (only this tokens be trainable)
        trainable_token_ids = [256001, 256002]

        embed_tokens.weight.requires_grad = True
        mask = torch.ones_like(embed_tokens.weight, dtype=torch.bool)
        mask[trainable_token_ids] = False  # Trainable Tokens are False (unfreeze), else True (freeze)

        # backward hook, with gradient masking
        def embedding_grad_mask_hook(grad):
            return grad.masked_fill(mask, 0)

        embed_tokens.weight.register_hook(embedding_grad_mask_hook)

        model.language_model.model.model.embed_tokens = embed_tokens
        
    count_parameters_by_module(model)

    return model

ANSWER_SUFFIX = "<end_of_turn>"
_IGNORE_INDEX = -100

ANSWER_SUFFIX = "<end_of_turn>"
_IGNORE_INDEX = -100

model_name_or_path = '/mnt/jeff/gemma-3-4b-it-omni'
use_flash_attention = False

output_dir = '../gemma_tmp14_audio_and_text_speechlora'
batch_size = 16
batch_size_per_gpu = 1
learning_rate = 5.0e-5 # 1.0e-4 for fine-tuning
wd = 0.01
num_train_epochs = 10

revision = "main" #"v1.0"

processor = AutoProcessor.from_pretrained(
    model_name_or_path,
    revision=revision,
    trust_remote_code=True,
)

model = create_model(
    model_name_or_path,
    revision=revision,
    use_flash_attention=use_flash_attention,
)

train_datasets = []

pickup_dataset = MultiturnAudioDataset(processor=processor,text_only=True,json_path='/mnt/jeff/InCar/data/multiturn_data/pickup_processed.json')
train_datasets.append(pickup_dataset)

pickup_dataset = MultiturnAudioDataset(processor=processor,json_path='/mnt/jeff/InCar/data/multiturn_data/pickup_processed.json')
train_datasets.append(pickup_dataset)

# custom_tw_loc = TWCostumData(processor=processor,
#                       csv_path='/mnt/jeff/InCar/data/tw_data/taiwan_location-srdc_tts-20250509-common_voice_16_1-TW.csv')
# train_datasets.append(custom_tw_loc) # 1500

# custom_tw_loc2 = TWCostumData(processor=processor,
#                       csv_path='/mnt/jeff/InCar/data/tw_data/taiwan_location-srdc_tts-20250529-common_voice_16_1-TW.csv')
# train_datasets.append(custom_tw_loc2) # 9458

# custom_yating_tw_road = TWCostumData(processor=processor,
#                       csv_path='/mnt/jeff/InCar/data/tw_data/taiwan_road-srdc_tts-20250430-yating-1-2s-breezyvoice.csv')
# train_datasets.append(custom_yating_tw_road) # 35224

# custom_tw_road = TWCostumData(processor=processor,
#                       csv_path='/mnt/jeff/InCar/data/tw_data/taiwan_road-srdc_tts-20250509-common_voice_16_1-TW.csv')
# train_datasets.append(custom_tw_road) # 1500

# custom_tw_road2 = TWCostumData(processor=processor,
#                       csv_path='/mnt/jeff/InCar/data/tw_data/taiwan_road-srdc_tts-20250529-common_voice_16_1-TW.csv')
# train_datasets.append(custom_tw_road2) # 35224



print("Count Num of Datasets", len(train_datasets))
print([len(dataset) for dataset in train_datasets])

# ConcatDataset
train_dataset = ConcatDataset(train_datasets) if len(train_datasets) > 1 else train_datasets[0]
print("Count Length of Datas", len(train_dataset))



# Check GPUs
num_gpus = torch.cuda.device_count()
print(f'training on {num_gpus} GPUs')

assert (
    batch_size % (num_gpus * batch_size_per_gpu) == 0
), 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = batch_size // (num_gpus * batch_size_per_gpu)

# hard coded training args
dp_config = {
    "fp16": {
      "enabled": "auto",
      "loss_scale": 0,
      "loss_scale_window": 1000,
      "initial_scale_power": 16,
      "hysteresis": 2,
      "min_loss_scale": 1
  },
   "zero_optimization": {
       "stage": 2,
       "allgather_partitions": True,
       "allgather_bucket_size": 5e8,
       "overlap_comm": False,
       "reduce_scatter": True,
       "reduce_bucket_size": 5e8,
       "contiguous_gradients": True,
       "cpu_offload": True
   },

   "train_batch_size": "auto",
    "gradient_accumulation_steps": "auto",
    "optimizer": {
        "type": "AdamW",
        "params": {
          "lr": "auto",
          "betas": 'auto',
          "eps": 'auto',
          "weight_decay": "auto"
        }
    },
    "scheduler": {
      "type": "WarmupDecayLR",
      "params": {
          "warmup_min_lr": "auto",
          "warmup_max_lr": "auto",
          "warmup_num_steps": "auto",
          "total_num_steps": "auto"
      }
  },
    "gradient_clipping": 1.0,
    "zero_optimization": {
        "stage": 0
    }
}
training_args = TrainingArguments(
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=batch_size_per_gpu,
    gradient_checkpointing=True,
    gradient_checkpointing_kwargs={'use_reentrant': False},
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim='adamw_torch',
    adam_beta1=0.9,
    adam_beta2=0.95,
    adam_epsilon=1e-7,
    learning_rate=learning_rate,
    weight_decay=wd,
    max_grad_norm=1.0,
    lr_scheduler_type='cosine',
    warmup_steps=50,
    logging_steps=10,
    output_dir=output_dir,
    save_total_limit=10,
    save_only_model=True,
    bf16=True,
    fp16=False,
    remove_unused_columns=False,
    report_to='none',
    deepspeed=None,
    disable_tqdm=False,
    dataloader_num_workers=16,
    save_strategy='epoch',
    # save_steps=2500,
    ddp_find_unused_parameters=True,

)

out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)

# create optimizer only for trainable params
optimizer = torch.optim.AdamW(
    filter(lambda p: p.requires_grad, model.parameters()),
    lr=learning_rate,
    weight_decay=wd,
    betas=(0.9, 0.95),
    eps=1e-7,
)

# Trainer Setting
trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=covost_collate_fn,
    train_dataset=train_dataset,
    optimizers=(optimizer, None)
)

trainer.train()


# # 1. Save LoRA Adapter
model.language_model.model.save_pretrained(output_dir)

# # 1-1. Delete Markdown file
# markdown_file = os.path.join(output_dir, "README.md")
# if os.path.exists(markdown_file):
#     os.remove(markdown_file)

# 2. Save entire model
model.save_pretrained(output_dir)