GGUF
English
conversational

ID2223 Exam Coach – QLoRA-Fine-Tuned Llama 3.2 1B (GGUF)

This repository contains a 1B parameter Llama 3.2 Instruct model fine-tuned using QLoRA in two stages:

  1. Instruction tuning on the FineTome dataset
  2. Exam-specialized fine-tuning on a custom ID2223 exam preparation dataset
  • The final model is exported to GGUF format (Q4_K_M and Q8_0) for efficient CPU inference.
  • It powers the Hugging Face Space "kevembuvak/iris", a self-study assistant for the KTH course “ID2223 – Scalable Machine Learning and Deep Learning”.

Model Summary

Property Value
Base Model meta-llama/Llama-3.2-1B-Instruct
Fine-tuning method QLoRA (4-bit NF4 quantization)
Training Frameworks transformers, trl, peft, bitsandbytes
GPU Used NVIDIA RTX 4090 16 GB
LoRA Config r=16, alpha=32, dropout=0.05
Context length 4096
Export Format GGUF Q4_K_M and Q8_0
Intended Use ID2223 exam preparation, ML/LLM explanations

Training Pipeline

This model was trained in two QLoRA stages.

Stage 1 - Instruction Tuning (FineTome)

Dataset: mlabonne/FineTome-100k (sampled 40k)

Preprocessing steps:

  • Convert ShareGPT-style data to Llama-3 message format
  • Apply chat template (tokenizer.apply_chat_template)
  • Limit to 4 most recent dialogue turns
  • Truncate to max length 512 tokens
  • Create 99/1 train-validation split

Training configuration:

  • 2 epochs
  • LR = 2e-4
  • Batch size 4 × grad_accum 4
  • BF16 compute
  • Optimizer: paged_adamw_8bit

This produced the adapter: llama32-1b-qlora-finetome.


Stage 2 - ID2223 Exam Specialization

Dataset: kevembuvak/id2223_exam_prep

Training configuration:

  • Base model: Meta-Llama-3.2-1B-Instruct
  • Load Stage 1 adapter as trainable
  • LR = 1e-4
  • 2 epochs
  • Batch size 4 × grad_accum 4
  • BF16 compute
  • Optimizer: paged_adamw_8bit

Final training loss: approx. 0.079


Related Resources

Companion Hugging Face Space - Iris [https://huggingface.co/spaces/kevembuvak/iris]

Training Code (GitHub) [https://github.com/keremburakyilmaz/PEFT-of-LLM]


Intended Use & Limitations

Intended For:

  • ID2223 exam preparation
  • Generating study materials and quizzes
  • Evaluating written answers

Not Suitable For:

  • High-stakes or safety-critical tasks
  • Factual-heavy real-world use outside ML context

Acknowledgements

  • Meta AI for Llama 3.2

  • FineTome dataset (mlabonne/FineTome-100k)

  • Hugging Face (transformers, trl, peft)

Downloads last month
799
GGUF
Model size
1B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for kevembuvak/llama32-1b-qlora-finetome-exam-gguf

Quantized
(326)
this model

Datasets used to train kevembuvak/llama32-1b-qlora-finetome-exam-gguf

Space using kevembuvak/llama32-1b-qlora-finetome-exam-gguf 1