ID2223 Exam Coach – QLoRA-Fine-Tuned Llama 3.2 1B (GGUF)
This repository contains a 1B parameter Llama 3.2 Instruct model fine-tuned using QLoRA in two stages:
- Instruction tuning on the FineTome dataset
- Exam-specialized fine-tuning on a custom ID2223 exam preparation dataset
- The final model is exported to GGUF format (Q4_K_M and Q8_0) for efficient CPU inference.
- It powers the Hugging Face Space "kevembuvak/iris", a self-study assistant for the KTH course “ID2223 – Scalable Machine Learning and Deep Learning”.
Model Summary
| Property | Value |
|---|---|
| Base Model | meta-llama/Llama-3.2-1B-Instruct |
| Fine-tuning method | QLoRA (4-bit NF4 quantization) |
| Training Frameworks | transformers, trl, peft, bitsandbytes |
| GPU Used | NVIDIA RTX 4090 16 GB |
| LoRA Config | r=16, alpha=32, dropout=0.05 |
| Context length | 4096 |
| Export Format | GGUF Q4_K_M and Q8_0 |
| Intended Use | ID2223 exam preparation, ML/LLM explanations |
Training Pipeline
This model was trained in two QLoRA stages.
Stage 1 - Instruction Tuning (FineTome)
Dataset: mlabonne/FineTome-100k (sampled 40k)
Preprocessing steps:
- Convert ShareGPT-style data to Llama-3 message format
- Apply chat template (
tokenizer.apply_chat_template) - Limit to 4 most recent dialogue turns
- Truncate to max length 512 tokens
- Create 99/1 train-validation split
Training configuration:
- 2 epochs
- LR = 2e-4
- Batch size 4 × grad_accum 4
- BF16 compute
- Optimizer: paged_adamw_8bit
This produced the adapter: llama32-1b-qlora-finetome.
Stage 2 - ID2223 Exam Specialization
Dataset: kevembuvak/id2223_exam_prep
Training configuration:
- Base model: Meta-Llama-3.2-1B-Instruct
- Load Stage 1 adapter as trainable
- LR = 1e-4
- 2 epochs
- Batch size 4 × grad_accum 4
- BF16 compute
- Optimizer: paged_adamw_8bit
Final training loss: approx. 0.079
Related Resources
Companion Hugging Face Space - Iris [https://huggingface.co/spaces/kevembuvak/iris]
Training Code (GitHub) [https://github.com/keremburakyilmaz/PEFT-of-LLM]
Intended Use & Limitations
Intended For:
- ID2223 exam preparation
- Generating study materials and quizzes
- Evaluating written answers
Not Suitable For:
- High-stakes or safety-critical tasks
- Factual-heavy real-world use outside ML context
Acknowledgements
Meta AI for Llama 3.2
FineTome dataset (mlabonne/FineTome-100k)
Hugging Face (transformers, trl, peft)
- Downloads last month
- 799
Hardware compatibility
Log In
to view the estimation
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for kevembuvak/llama32-1b-qlora-finetome-exam-gguf
Base model
meta-llama/Llama-3.2-1B-Instruct