conversion scripts
Browse files- conversion/README.md +56 -0
- conversion/convert.py +207 -0
- conversion/requirements.txt +6 -0
conversion/README.md
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ONNX Model Conversion Notes
|
| 2 |
+
|
| 3 |
+
First of all, this was rather fun to do!
|
| 4 |
+
The `convert.py` script is based on code I made on Google Colab in order to have access to a GPU.
|
| 5 |
+
The `requirements.txt` might not be perfect, I'd much rather use UV which I use on a daily basis however this was created in Google colab in a fast manner.
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
Also note that I checked the output of the converted models and the original to compare:
|
| 9 |
+
- The fp32 (default ONNX) is nearly the same as the original HF model.
|
| 10 |
+
- However, the FP16 converted ONNX model is not exactly the same, there is a margin of error.
|
| 11 |
+
|
| 12 |
+
Below is a code snippet that showcases the comparison:
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
import torch
|
| 16 |
+
import numpy as np
|
| 17 |
+
import onnxruntime as ort
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
| 20 |
+
|
| 21 |
+
MODEL_ID = "vidore/colpali-v1.3-hf"
|
| 22 |
+
# change this to the FP16 version or FP32 version
|
| 23 |
+
ONNX_PATH = "/content/final_colpali/model.onnx"
|
| 24 |
+
DEVICE = "cpu"
|
| 25 |
+
|
| 26 |
+
hf = (
|
| 27 |
+
ColPaliForRetrieval
|
| 28 |
+
.from_pretrained(MODEL_ID, torch_dtype=torch.float16)
|
| 29 |
+
.to(DEVICE)
|
| 30 |
+
.eval()
|
| 31 |
+
)
|
| 32 |
+
processor = ColPaliProcessor.from_pretrained(MODEL_ID)
|
| 33 |
+
|
| 34 |
+
img = Image.new("RGB", (32, 32), color="white")
|
| 35 |
+
inputs = processor(images=[img], return_tensors="pt").to(DEVICE)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
out = hf(**inputs)
|
| 39 |
+
hf_emb = out.embeddings.cpu().numpy()
|
| 40 |
+
|
| 41 |
+
sess = ort.InferenceSession(ONNX_PATH, providers=["CPUExecutionProvider"])
|
| 42 |
+
ort_inputs = {k: v.cpu().numpy() for k, v in inputs.items()}
|
| 43 |
+
[onnx_emb] = sess.run(["embeddings"], ort_inputs)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
python
|
| 48 |
+
## Wil output for FP32
|
| 49 |
+
## 0.999~
|
| 50 |
+
## Will output for FP16
|
| 51 |
+
## 0.939~
|
| 52 |
+
dot = np.sum(hf_emb * onnx_emb, axis=-1)
|
| 53 |
+
norms = np.linalg.norm(hf_emb,axis=-1) * np.linalg.norm(onnx_emb,axis=-1)
|
| 54 |
+
cosim = dot / norms
|
| 55 |
+
cosim.min()
|
| 56 |
+
```
|
conversion/convert.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import onnx
|
| 5 |
+
import argparse
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from torch.onnx._globals import GLOBALS
|
| 8 |
+
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
| 9 |
+
from optimum.onnx.graph_transformations import check_and_save_model
|
| 10 |
+
import onnx_graphsurgeon as gs
|
| 11 |
+
from onnxconverter_common import float16
|
| 12 |
+
from onnx.external_data_helper import convert_model_to_external_data
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def export_model(model_id, output_dir, device):
|
| 16 |
+
"""Export HuggingFace model ColPaliForRetrieval to ONNX format"""
|
| 17 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 18 |
+
|
| 19 |
+
# Load HF model & processor
|
| 20 |
+
model = (
|
| 21 |
+
ColPaliForRetrieval.from_pretrained(
|
| 22 |
+
model_id, torch_dtype=torch.float16, device_map="auto"
|
| 23 |
+
)
|
| 24 |
+
.to(device)
|
| 25 |
+
.eval()
|
| 26 |
+
)
|
| 27 |
+
processor = ColPaliProcessor.from_pretrained(model_id)
|
| 28 |
+
|
| 29 |
+
# Save HF artifacts
|
| 30 |
+
model.config.save_pretrained(output_dir)
|
| 31 |
+
processor.save_pretrained(output_dir)
|
| 32 |
+
|
| 33 |
+
# patched forward method
|
| 34 |
+
_orig_forward = model.forward
|
| 35 |
+
|
| 36 |
+
def _patched_forward(
|
| 37 |
+
self, pixel_values=None, input_ids=None, attention_mask=None, **kwargs
|
| 38 |
+
):
|
| 39 |
+
# Call the original .forward
|
| 40 |
+
out = _orig_forward(
|
| 41 |
+
pixel_values=pixel_values,
|
| 42 |
+
input_ids=input_ids,
|
| 43 |
+
attention_mask=attention_mask,
|
| 44 |
+
**kwargs,
|
| 45 |
+
)
|
| 46 |
+
return out.embeddings
|
| 47 |
+
|
| 48 |
+
model.forward = _patched_forward.__get__(model, model.__class__)
|
| 49 |
+
|
| 50 |
+
# check with dummy image batch
|
| 51 |
+
dummy_img = Image.new("RGB", (32, 32), color="white")
|
| 52 |
+
vision_pt = processor(images=[dummy_img], return_tensors="pt").to(device)
|
| 53 |
+
|
| 54 |
+
pv = vision_pt["pixel_values"]
|
| 55 |
+
ids = vision_pt["input_ids"]
|
| 56 |
+
msk = vision_pt["attention_mask"]
|
| 57 |
+
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
emb = model(pv, ids, msk)
|
| 60 |
+
print("Sanity-check embedding shape:", emb.shape)
|
| 61 |
+
|
| 62 |
+
# Export to ONNX + external data
|
| 63 |
+
GLOBALS.onnx_shape_inference = False # Workaround shape bugs
|
| 64 |
+
onnx_path = os.path.join(output_dir, "model.onnx")
|
| 65 |
+
external_binfile = os.path.join(output_dir, "model.onnx_data")
|
| 66 |
+
|
| 67 |
+
torch.onnx.export(
|
| 68 |
+
model,
|
| 69 |
+
(pv, ids, msk),
|
| 70 |
+
onnx_path,
|
| 71 |
+
export_params=True,
|
| 72 |
+
opset_version=14,
|
| 73 |
+
do_constant_folding=True,
|
| 74 |
+
use_external_data_format=True,
|
| 75 |
+
all_tensors_to_one_file=True,
|
| 76 |
+
size_threshold=0,
|
| 77 |
+
external_data_filename=os.path.basename(external_binfile),
|
| 78 |
+
input_names=["pixel_values", "input_ids", "attention_mask"],
|
| 79 |
+
output_names=["embeddings"],
|
| 80 |
+
dynamic_axes={
|
| 81 |
+
"pixel_values": {0: "batch_size"},
|
| 82 |
+
"input_ids": {0: "batch_size", 1: "seq_len"},
|
| 83 |
+
"attention_mask": {0: "batch_size", 1: "seq_len"},
|
| 84 |
+
"embeddings": {0: "batch_size", 1: "seq_len"},
|
| 85 |
+
},
|
| 86 |
+
)
|
| 87 |
+
print("Exported ONNX to", onnx_path)
|
| 88 |
+
|
| 89 |
+
# Shape-infer & fix external-data refs
|
| 90 |
+
onnx_model = onnx.shape_inference.infer_shapes_path(onnx_path)
|
| 91 |
+
onnx_model = onnx.load(onnx_path)
|
| 92 |
+
check_and_save_model(onnx_model, onnx_path)
|
| 93 |
+
print("Shape-inference + external refs fixed")
|
| 94 |
+
|
| 95 |
+
# Minify tokenizer.json
|
| 96 |
+
tok = os.path.join(output_dir, "tokenizer.json")
|
| 97 |
+
if os.path.isfile(tok):
|
| 98 |
+
data = json.load(open(tok))
|
| 99 |
+
with open(tok, "w") as f:
|
| 100 |
+
json.dump(data, f, separators=(",", ":"))
|
| 101 |
+
print("✔ Minified tokenizer.json")
|
| 102 |
+
|
| 103 |
+
print("✅ ONNX + HF artifacts exported to", output_dir)
|
| 104 |
+
return onnx_path
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def quantize_fp16_and_externalize(
|
| 108 |
+
input_path,
|
| 109 |
+
output_path,
|
| 110 |
+
external_data_filename="model.onnx_data",
|
| 111 |
+
op_block_list=None,
|
| 112 |
+
):
|
| 113 |
+
"""
|
| 114 |
+
Quantize an ONNX model from FP32 to FP16
|
| 115 |
+
1) Load FP32 ONNX (+ its .onnx_data)
|
| 116 |
+
2) Cast weight tensors to FP16
|
| 117 |
+
3) Topo-sort / clean up
|
| 118 |
+
4) Copy opset_import from original model
|
| 119 |
+
5) Mark ALL tensors for external data
|
| 120 |
+
6) Save the new ONNX + .onnx_data
|
| 121 |
+
"""
|
| 122 |
+
orig = onnx.load(input_path, load_external_data=True)
|
| 123 |
+
model = onnx.load(input_path, load_external_data=True)
|
| 124 |
+
|
| 125 |
+
disable_si = model.ByteSize() >= onnx.checker.MAXIMUM_PROTOBUF
|
| 126 |
+
blocked = set(float16.DEFAULT_OP_BLOCK_LIST)
|
| 127 |
+
if op_block_list:
|
| 128 |
+
blocked.update(op_block_list)
|
| 129 |
+
blocked.update(["LayerNormalization", "Softmax", "Div"])
|
| 130 |
+
|
| 131 |
+
model_fp16 = float16.convert_float_to_float16(
|
| 132 |
+
model,
|
| 133 |
+
max_finite_val=65504.0,
|
| 134 |
+
keep_io_types=True,
|
| 135 |
+
disable_shape_infer=disable_si,
|
| 136 |
+
op_block_list=blocked,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
graph = gs.import_onnx(model_fp16)
|
| 140 |
+
graph.toposort()
|
| 141 |
+
model_fp16 = gs.export_onnx(graph)
|
| 142 |
+
|
| 143 |
+
model_fp16.ClearField("opset_import")
|
| 144 |
+
model_fp16.opset_import.extend(orig.opset_import)
|
| 145 |
+
|
| 146 |
+
convert_model_to_external_data(
|
| 147 |
+
model_fp16,
|
| 148 |
+
all_tensors_to_one_file=True,
|
| 149 |
+
location=external_data_filename,
|
| 150 |
+
size_threshold=0,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# required for check_and_save_model
|
| 154 |
+
if not model_fp16.opset_import:
|
| 155 |
+
model_fp16.opset_import.extend(
|
| 156 |
+
[
|
| 157 |
+
onnx.helper.make_opsetid("", 14), # Default domain with opset 14
|
| 158 |
+
]
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Save with shape-infer + final checks
|
| 162 |
+
check_and_save_model(model_fp16, output_path)
|
| 163 |
+
|
| 164 |
+
print("✅ FP16 model quantized and saved:")
|
| 165 |
+
print(f" ONNX: {output_path}")
|
| 166 |
+
print(
|
| 167 |
+
f" DATA: {os.path.join(os.path.dirname(output_path), external_data_filename)}"
|
| 168 |
+
)
|
| 169 |
+
return True
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def main():
|
| 173 |
+
parser = argparse.ArgumentParser(
|
| 174 |
+
description="Convert ColPali model to ONNX format and FP16 quantization"
|
| 175 |
+
)
|
| 176 |
+
parser.add_argument(
|
| 177 |
+
"--model-id", default="vidore/colpali-v1.3-hf", help="HuggingFace model ID"
|
| 178 |
+
)
|
| 179 |
+
parser.add_argument("--output-dir", default=None, help="Output directory")
|
| 180 |
+
parser.add_argument(
|
| 181 |
+
"--quantize", action="store_true", help="Apply FP16 quantization after export"
|
| 182 |
+
)
|
| 183 |
+
parser.add_argument("--device", default=None, help="Device for model (cuda/cpu)")
|
| 184 |
+
args = parser.parse_args()
|
| 185 |
+
|
| 186 |
+
if args.device is None:
|
| 187 |
+
args.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 188 |
+
|
| 189 |
+
if args.output_dir is None:
|
| 190 |
+
args.output_dir = os.path.join("output", args.model_id.replace("/", "_"))
|
| 191 |
+
|
| 192 |
+
# Export model to ONNX
|
| 193 |
+
onnx_path = export_model(args.model_id, args.output_dir, args.device)
|
| 194 |
+
|
| 195 |
+
# Optionally quantize to FP16
|
| 196 |
+
if args.quantize:
|
| 197 |
+
print("Starting FP16 quantization")
|
| 198 |
+
quantize_fp16_and_externalize(
|
| 199 |
+
input_path=onnx_path,
|
| 200 |
+
output_path=onnx_path,
|
| 201 |
+
external_data_filename="model.onnx_data",
|
| 202 |
+
op_block_list=None,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
if __name__ == "__main__":
|
| 207 |
+
main()
|
conversion/requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
onnx-graphsurgeon==0.5.2
|
| 2 |
+
onnxconverter-common==1.14.0
|
| 3 |
+
onnxruntime==1.21.1
|
| 4 |
+
onnxruntime-tools==1.7.0
|
| 5 |
+
onnxslim==0.1.51
|
| 6 |
+
transformers==4.48.3
|