File size: 11,186 Bytes
fd8c8b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
/*
BitLinear C++ Extension
This file provides the C++/PyBind11 interface for BitLinear operations.
It dispatches to CPU or CUDA implementations based on tensor device.
Architecture:
- Python (torch) → PyBind11 → C++ dispatcher → CPU/CUDA kernels
- This file handles: binding, type checking, device dispatch
- Actual computation in: CPU (this file) and CUDA (bitlinear_kernel.cu)
*/
#include <torch/extension.h>
#include <vector>
/*
* Forward declarations for CUDA kernels (implemented in bitlinear_kernel.cu)
* These will be linked at compile time if CUDA is available.
*/
#ifdef WITH_CUDA
torch::Tensor bitlinear_cuda_forward(
torch::Tensor x,
torch::Tensor W_ternary,
torch::Tensor gamma,
torch::optional<torch::Tensor> bias
);
torch::Tensor multi_ternary_cuda_forward(
torch::Tensor x,
torch::Tensor W_ternary,
torch::Tensor gammas,
torch::optional<torch::Tensor> bias
);
#endif
/*
* CPU implementation of BitLinear forward pass
*
* Computes: output = (x @ W_ternary^T) * gamma + bias
*
* This is a reference implementation optimized for clarity.
* Further optimizations can be added:
* - Vectorization (AVX/AVX512)
* - OpenMP parallelization
* - Cache-efficient tiling
*
* Args:
* x: Input tensor [..., in_features]
* W_ternary: Ternary weights [out_features, in_features], values in {-1, 0, 1}
* gamma: Scaling factors [out_features]
* bias: Optional bias [out_features]
*
* Returns:
* Output tensor [..., out_features]
*/
torch::Tensor bitlinear_cpu_forward(
torch::Tensor x,
torch::Tensor W_ternary,
torch::Tensor gamma,
torch::optional<torch::Tensor> bias
) {
// Handle multi-dimensional input by flattening to 2D
auto x_shape = x.sizes().vec();
int64_t batch_size = 1;
for (size_t i = 0; i < x_shape.size() - 1; i++) {
batch_size *= x_shape[i];
}
int64_t in_features = x_shape.back();
int64_t out_features = W_ternary.size(0);
// Reshape x to [batch_size, in_features]
auto x_2d = x.view({batch_size, in_features});
// Compute matmul: [batch, in] @ [in, out] = [batch, out]
// W_ternary is [out, in], so transpose it
auto output = torch::matmul(x_2d, W_ternary.t());
// Apply gamma scaling: element-wise multiply by gamma[out_features]
// gamma shape is [out_features], output is [batch, out_features]
output = output * gamma.unsqueeze(0);
// Add bias if present
if (bias.has_value() && bias.value().defined()) {
output = output + bias.value().unsqueeze(0);
}
// Reshape output back to original batch dimensions
std::vector<int64_t> out_shape(x_shape.begin(), x_shape.end() - 1);
out_shape.push_back(out_features);
output = output.view(out_shape);
return output;
}
/*
* CPU implementation of multi-ternary forward pass
*
* Computes: output = sum_{i=1}^k [(x @ W_i^T) * gamma_i] + bias
*
* Iterates over k ternary components and accumulates their contributions.
*
* Args:
* x: Input tensor [..., in_features]
* W_ternary: Stacked ternary weights [k, out_features, in_features]
* gammas: Stacked scaling factors [k, out_features]
* bias: Optional bias [out_features]
*
* Returns:
* Output tensor [..., out_features]
*/
torch::Tensor multi_ternary_cpu_forward(
torch::Tensor x,
torch::Tensor W_ternary,
torch::Tensor gammas,
torch::optional<torch::Tensor> bias
) {
// W_ternary: [k, out_features, in_features]
// gammas: [k, out_features]
int64_t k = W_ternary.size(0);
int64_t out_features = W_ternary.size(1);
int64_t in_features = W_ternary.size(2);
// Handle multi-dimensional input by flattening to 2D
auto x_shape = x.sizes().vec();
int64_t batch_size = 1;
for (size_t i = 0; i < x_shape.size() - 1; i++) {
batch_size *= x_shape[i];
}
// Reshape x to [batch_size, in_features]
auto x_2d = x.view({batch_size, in_features});
// Initialize output
auto output = torch::zeros({batch_size, out_features}, x.options());
// Accumulate k ternary linear operations
for (int64_t i = 0; i < k; i++) {
// Get i-th component: W_i [out_features, in_features], gamma_i [out_features]
auto W_i = W_ternary[i];
auto gamma_i = gammas[i];
// Compute: (x @ W_i^T) * gamma_i
auto component = torch::matmul(x_2d, W_i.t());
component = component * gamma_i.unsqueeze(0);
// Accumulate
output = output + component;
}
// Add bias if present
if (bias.has_value() && bias.value().defined()) {
output = output + bias.value().unsqueeze(0);
}
// Reshape output back to original batch dimensions
std::vector<int64_t> out_shape(x_shape.begin(), x_shape.end() - 1);
out_shape.push_back(out_features);
output = output.view(out_shape);
return output;
}
/*
* Dispatcher: routes to CPU or CUDA implementation based on tensor device
*
* This is the main entry point called from Python.
* Checks tensor device and dispatches accordingly.
*/
torch::Tensor bitlinear_forward(
torch::Tensor x,
torch::Tensor W_ternary,
torch::Tensor gamma,
torch::optional<torch::Tensor> bias
) {
// Type and shape checks
TORCH_CHECK(x.dim() >= 2, "Input must have at least 2 dimensions");
TORCH_CHECK(W_ternary.dim() == 2, "W_ternary must be 2D");
TORCH_CHECK(gamma.dim() == 1 || gamma.dim() == 2, "gamma must be 1D or 2D");
// Device dispatch
if (x.is_cuda()) {
#ifdef WITH_CUDA
return bitlinear_cuda_forward(x, W_ternary, gamma, bias);
#else
AT_ERROR("BitLinear CUDA kernels not compiled. Rebuild with CUDA support.");
#endif
} else {
return bitlinear_cpu_forward(x, W_ternary, gamma, bias);
}
}
/*
* Multi-ternary dispatcher
*/
torch::Tensor multi_ternary_forward(
torch::Tensor x,
torch::Tensor W_ternary,
torch::Tensor gammas,
torch::optional<torch::Tensor> bias
) {
// Type and shape checks
TORCH_CHECK(x.dim() >= 2, "Input must have at least 2 dimensions");
TORCH_CHECK(W_ternary.dim() == 3, "W_ternary must be 3D [k, out_features, in_features]");
TORCH_CHECK(gammas.dim() == 2, "gammas must be 2D [k, out_features]");
// Device dispatch
if (x.is_cuda()) {
#ifdef WITH_CUDA
return multi_ternary_cuda_forward(x, W_ternary, gammas, bias);
#else
AT_ERROR("Multi-ternary CUDA kernels not compiled. Rebuild with CUDA support.");
#endif
} else {
return multi_ternary_cpu_forward(x, W_ternary, gammas, bias);
}
}
/*
* Utility: pack ternary weights to base-3 representation
*
* Packs ternary weights {-1, 0, +1} into bytes using base-3 encoding.
* Each byte stores 5 ternary values: val0 + 3*val1 + 9*val2 + 27*val3 + 81*val4
* Values are mapped: -1 -> 0, 0 -> 1, +1 -> 2
* Max value: 2+6+18+54+162 = 242 (fits in uint8)
*
* Achieves ~20x memory compression vs float32
*/
torch::Tensor pack_ternary_base3_cpp(torch::Tensor W_ternary) {
// Flatten input
auto flat = W_ternary.flatten().to(torch::kCPU).to(torch::kInt8);
int64_t numel = flat.numel();
// Map {-1, 0, +1} to {0, 1, 2}
auto mapped = (flat + 1).to(torch::kUInt8);
// Calculate output size: ceil(numel / 5)
int64_t packed_size = (numel + 4) / 5;
auto packed = torch::zeros({packed_size}, torch::dtype(torch::kUInt8).device(torch::kCPU));
// Get data pointers
auto mapped_ptr = mapped.data_ptr<uint8_t>();
auto packed_ptr = packed.data_ptr<uint8_t>();
// Powers of 3 for base-3 encoding
const uint8_t powers[5] = {1, 3, 9, 27, 81};
// Pack 5 values into each byte
for (int64_t i = 0; i < packed_size; i++) {
int64_t base_idx = i * 5;
uint8_t packed_val = 0;
for (int j = 0; j < 5; j++) {
int64_t idx = base_idx + j;
if (idx < numel) {
packed_val += mapped_ptr[idx] * powers[j];
} else {
// Pad with 1 (representing 0) for consistent unpacking
packed_val += 1 * powers[j];
}
}
packed_ptr[i] = packed_val;
}
return packed;
}
/*
* Utility: unpack base-3 ternary weights
*
* Unpacks bytes back to ternary weights {-1, 0, +1}.
* Reverses the base-3 encoding: extracts 5 values per byte.
* Maps {0, 1, 2} back to {-1, 0, +1}
*/
torch::Tensor unpack_ternary_base3_cpp(
torch::Tensor packed,
std::vector<int64_t> original_shape
) {
// Calculate expected number of elements
int64_t numel = 1;
for (auto dim : original_shape) {
numel *= dim;
}
// Flatten packed input
auto packed_flat = packed.flatten().to(torch::kCPU).to(torch::kUInt8);
int64_t packed_size = packed_flat.numel();
// Create output tensor
auto unpacked = torch::zeros({numel}, torch::dtype(torch::kInt8).device(torch::kCPU));
// Get data pointers
auto packed_ptr = packed_flat.data_ptr<uint8_t>();
auto unpacked_ptr = unpacked.data_ptr<int8_t>();
// Unpack 5 values from each byte
int64_t out_idx = 0;
for (int64_t i = 0; i < packed_size && out_idx < numel; i++) {
uint8_t packed_val = packed_ptr[i];
// Extract 5 ternary values using base-3 decoding
for (int j = 0; j < 5 && out_idx < numel; j++) {
uint8_t val = packed_val % 3; // Get current base-3 digit
packed_val /= 3; // Shift to next digit
// Map {0, 1, 2} back to {-1, 0, +1}
unpacked_ptr[out_idx] = static_cast<int8_t>(val) - 1;
out_idx++;
}
}
// Reshape to original shape
return unpacked.view(original_shape).to(torch::kFloat32);
}
/*
* PyBind11 module definition
*
* This exposes C++ functions to Python as:
* import bitlinear_cpp
* output = bitlinear_cpp.forward(x, W, gamma, bias)
*/
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &bitlinear_forward, "BitLinear forward (CPU/CUDA)",
py::arg("x"),
py::arg("W_ternary"),
py::arg("gamma"),
py::arg("bias") = py::none());
m.def("multi_ternary_forward", &multi_ternary_forward,
"Multi-ternary linear forward (CPU/CUDA)",
py::arg("x"),
py::arg("W_ternary"),
py::arg("gammas"),
py::arg("bias") = py::none());
m.def("pack_ternary_base3", &pack_ternary_base3_cpp,
"Pack ternary weights to base-3 (CPU)",
py::arg("W_ternary"));
m.def("unpack_ternary_base3", &unpack_ternary_base3_cpp,
"Unpack base-3 ternary weights (CPU)",
py::arg("packed"),
py::arg("original_shape"));
}
|