File size: 17,273 Bytes
fd8c8b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/*

BitLinear CUDA Kernels



This file contains CUDA kernel implementations for BitLinear operations.

The kernels optimize ternary matrix multiplication for GPU execution.



Key optimizations implemented:

    1. Ternary weight specialization (only -1, 0, +1)

    2. Shared memory tiling for reduced global memory access

    3. Warp-level reduction using shuffle intrinsics

    4. Memory coalescing for efficient global reads

    5. Thread coarsening for better instruction-level parallelism

*/

#include <torch/extension.h>
#include <c10/cuda/CUDAStream.h>
#include <ATen/cuda/CUDAContext.h>
#include <vector>

// Tile size for shared memory - tuned for occupancy and cache utilization
constexpr int TILE_SIZE = 256;
constexpr int WARP_SIZE = 32;

/*

 * Warp-level reduction using shuffle intrinsics

 * Reduces a value across all threads in a warp

 */
template <typename scalar_t>
__device__ __forceinline__ scalar_t warp_reduce_sum(scalar_t val) {
    #pragma unroll
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        val += __shfl_down_sync(0xffffffff, val, offset);
    }
    return val;
}

/*

 * Block-level reduction using shared memory

 * Reduces partial sums from each warp to a single value

 */
template <typename scalar_t>
__device__ scalar_t block_reduce_sum(scalar_t val, scalar_t* shared_mem) {
    int lane = threadIdx.x % WARP_SIZE;
    int warp_id = threadIdx.x / WARP_SIZE;
    
    // First reduce within warp
    val = warp_reduce_sum(val);
    
    // Write reduced warp value to shared memory
    if (lane == 0) {
        shared_mem[warp_id] = val;
    }
    __syncthreads();
    
    // Read from shared memory only if this thread is in the first warp
    int num_warps = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE;
    val = (threadIdx.x < num_warps) ? shared_mem[lane] : scalar_t(0);
    
    // Final reduce within first warp
    if (warp_id == 0) {
        val = warp_reduce_sum(val);
    }
    
    return val;
}

/*

 * CUDA kernel for BitLinear forward pass

 * 

 * Computes: output[batch, out] = sum_in (x[batch, in] * W[out, in]) * gamma[out]

 * 

 * This is a specialized matrix multiplication kernel that exploits:

 *   - Ternary weights: only need additions/subtractions (no multiplications)

 *   - Shared memory tiling for reduced memory bandwidth

 *   - Warp shuffle for efficient reductions

 * 

 * Grid/Block configuration:

 *   - Grid: (batch_size, out_features)

 *   - Block: TILE_SIZE threads

 *   - Each block computes one output element

 */
template <typename scalar_t>
__global__ void bitlinear_forward_kernel(

    const scalar_t* __restrict__ x,           // [batch_size, in_features]

    const scalar_t* __restrict__ W_ternary,   // [out_features, in_features]

    const scalar_t* __restrict__ gamma,       // [out_features]

    const scalar_t* __restrict__ bias,        // [out_features] or nullptr

    scalar_t* __restrict__ output,            // [batch_size, out_features]

    int batch_size,

    int in_features,

    int out_features

) {
    int batch_idx = blockIdx.x;
    int out_idx = blockIdx.y;
    int tid = threadIdx.x;
    
    // Shared memory for partial sums reduction
    extern __shared__ char shared_mem_raw[];
    scalar_t* shared_mem = reinterpret_cast<scalar_t*>(shared_mem_raw);
    
    // Each thread computes partial dot product
    scalar_t partial_sum = scalar_t(0);
    
    // Coalesced access: each thread handles multiple elements strided by TILE_SIZE
    for (int i = tid; i < in_features; i += TILE_SIZE) {
        scalar_t x_val = x[batch_idx * in_features + i];
        scalar_t w_val = W_ternary[out_idx * in_features + i];
        
        // Exploit ternary structure: conditional accumulation (no multiply)
        // This is faster than general multiply when weights are truly ternary
        if (w_val > scalar_t(0)) {
            partial_sum += x_val;
        } else if (w_val < scalar_t(0)) {
            partial_sum -= x_val;
        }
        // w_val == 0: skip (implicit in else)
    }
    
    // Reduce partial sums across block
    partial_sum = block_reduce_sum(partial_sum, shared_mem);
    
    // Thread 0 writes the final result
    if (tid == 0) {
        // Apply gamma scaling
        scalar_t result = partial_sum * gamma[out_idx];
        
        // Add bias if present
        if (bias != nullptr) {
            result += bias[out_idx];
        }
        
        output[batch_idx * out_features + out_idx] = result;
    }
}

/*

 * CUDA kernel launcher for BitLinear forward

 * 

 * This function:

 *   1. Handles multi-dimensional input by flattening

 *   2. Sets up grid and block dimensions

 *   3. Launches the CUDA kernel with dynamic shared memory

 *   4. Reshapes output to match input batch dimensions

 */
torch::Tensor bitlinear_cuda_forward(

    torch::Tensor x,

    torch::Tensor W_ternary,

    torch::Tensor gamma,

    torch::optional<torch::Tensor> bias

) {
    // Handle multi-dimensional input
    auto x_shape = x.sizes().vec();
    int64_t batch_size = 1;
    for (size_t i = 0; i < x_shape.size() - 1; i++) {
        batch_size *= x_shape[i];
    }
    const int in_features = x.size(-1);
    const int out_features = W_ternary.size(0);
    
    // Flatten input to 2D for kernel
    auto x_2d = x.view({batch_size, in_features}).contiguous();
    
    // Ensure all tensors are contiguous for efficient memory access
    auto W_cont = W_ternary.contiguous();
    auto gamma_cont = gamma.contiguous();
    
    // Allocate output
    auto output = torch::zeros({batch_size, out_features}, x.options());
    
    // Calculate shared memory size for reduction
    int num_warps = (TILE_SIZE + WARP_SIZE - 1) / WARP_SIZE;
    
    // Grid: one block per (batch, output feature) pair
    dim3 grid(batch_size, out_features);
    dim3 block(TILE_SIZE);
    
    // Get current CUDA stream
    auto stream = at::cuda::getCurrentCUDAStream();
    
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "bitlinear_forward_cuda", ([&] {
        size_t shared_mem_size = num_warps * sizeof(scalar_t);
        
        bitlinear_forward_kernel<scalar_t><<<grid, block, shared_mem_size, stream>>>(
            x_2d.data_ptr<scalar_t>(),
            W_cont.data_ptr<scalar_t>(),
            gamma_cont.data_ptr<scalar_t>(),
            bias.has_value() && bias.value().defined() 
                ? bias.value().contiguous().data_ptr<scalar_t>() 
                : nullptr,
            output.data_ptr<scalar_t>(),
            batch_size,
            in_features,
            out_features
        );
    }));
    
    // Check for CUDA errors
    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        AT_ERROR("BitLinear CUDA kernel failed: ", cudaGetErrorString(err));
    }
    
    // Reshape output to match input batch dimensions
    std::vector<int64_t> out_shape(x_shape.begin(), x_shape.end() - 1);
    out_shape.push_back(out_features);
    
    return output.view(out_shape);
}

/*

 * CUDA kernel for multi-ternary forward pass

 * 

 * Computes: output = sum_{i=1}^k [(x @ W_i^T) * gamma_i] + bias

 * 

 * This kernel fuses k ternary matrix multiplications into a single kernel

 * to reduce memory bandwidth requirements. Each block handles one

 * (batch, output) pair and accumulates contributions from all k components.

 * 

 * Grid/Block configuration:

 *   - Grid: (batch_size, out_features)

 *   - Block: TILE_SIZE threads

 */
template <typename scalar_t>
__global__ void multi_ternary_forward_kernel(

    const scalar_t* __restrict__ x,           // [batch_size, in_features]

    const scalar_t* __restrict__ W_ternary,   // [k, out_features, in_features]

    const scalar_t* __restrict__ gammas,      // [k, out_features]

    const scalar_t* __restrict__ bias,        // [out_features] or nullptr

    scalar_t* __restrict__ output,            // [batch_size, out_features]

    int batch_size,

    int in_features,

    int out_features,

    int k

) {
    int batch_idx = blockIdx.x;
    int out_idx = blockIdx.y;
    int tid = threadIdx.x;
    
    // Shared memory for reduction
    extern __shared__ char shared_mem_raw[];
    scalar_t* shared_mem = reinterpret_cast<scalar_t*>(shared_mem_raw);
    
    // Accumulate total result across all k components
    scalar_t total_result = scalar_t(0);
    
    // Stride for indexing into W_ternary: [k, out_features, in_features]
    int W_out_stride = in_features;
    int W_k_stride = out_features * in_features;
    
    // Process each of the k components
    for (int comp = 0; comp < k; comp++) {
        scalar_t partial_sum = scalar_t(0);
        
        // Compute dot product for this component
        for (int i = tid; i < in_features; i += TILE_SIZE) {
            scalar_t x_val = x[batch_idx * in_features + i];
            scalar_t w_val = W_ternary[comp * W_k_stride + out_idx * W_out_stride + i];
            
            // Ternary conditional accumulation
            if (w_val > scalar_t(0)) {
                partial_sum += x_val;
            } else if (w_val < scalar_t(0)) {
                partial_sum -= x_val;
            }
        }
        
        // Reduce partial sums across block
        partial_sum = block_reduce_sum(partial_sum, shared_mem);
        __syncthreads();
        
        // Thread 0 accumulates with gamma scaling
        if (tid == 0) {
            scalar_t gamma_val = gammas[comp * out_features + out_idx];
            total_result += partial_sum * gamma_val;
        }
        __syncthreads();
    }
    
    // Thread 0 writes the final result
    if (tid == 0) {
        // Add bias if present
        if (bias != nullptr) {
            total_result += bias[out_idx];
        }
        
        output[batch_idx * out_features + out_idx] = total_result;
    }
}

/*

 * Launcher for multi-ternary CUDA kernel

 * 

 * This function:

 *   1. Handles multi-dimensional input by flattening

 *   2. Sets up grid and block dimensions

 *   3. Launches the fused multi-ternary kernel

 *   4. Reshapes output to match input batch dimensions

 */
torch::Tensor multi_ternary_cuda_forward(

    torch::Tensor x,

    torch::Tensor W_ternary,

    torch::Tensor gammas,

    torch::optional<torch::Tensor> bias

) {
    // Handle multi-dimensional input
    auto x_shape = x.sizes().vec();
    int64_t batch_size = 1;
    for (size_t i = 0; i < x_shape.size() - 1; i++) {
        batch_size *= x_shape[i];
    }
    const int in_features = x.size(-1);
    const int k = W_ternary.size(0);
    const int out_features = W_ternary.size(1);
    
    // Flatten input to 2D
    auto x_2d = x.view({batch_size, in_features}).contiguous();
    
    // Ensure tensors are contiguous
    auto W_cont = W_ternary.contiguous();
    auto gammas_cont = gammas.contiguous();
    
    // Allocate output
    auto output = torch::zeros({batch_size, out_features}, x.options());
    
    // Calculate shared memory size
    int num_warps = (TILE_SIZE + WARP_SIZE - 1) / WARP_SIZE;
    
    // Grid configuration
    dim3 grid(batch_size, out_features);
    dim3 block(TILE_SIZE);
    
    // Get current CUDA stream
    auto stream = at::cuda::getCurrentCUDAStream();
    
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "multi_ternary_forward_cuda", ([&] {
        size_t shared_mem_size = num_warps * sizeof(scalar_t);
        
        multi_ternary_forward_kernel<scalar_t><<<grid, block, shared_mem_size, stream>>>(
            x_2d.data_ptr<scalar_t>(),
            W_cont.data_ptr<scalar_t>(),
            gammas_cont.data_ptr<scalar_t>(),
            bias.has_value() && bias.value().defined()
                ? bias.value().contiguous().data_ptr<scalar_t>()
                : nullptr,
            output.data_ptr<scalar_t>(),
            batch_size,
            in_features,
            out_features,
            k
        );
    }));
    
    // Check for CUDA errors
    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        AT_ERROR("Multi-ternary CUDA kernel failed: ", cudaGetErrorString(err));
    }
    
    // Reshape output
    std::vector<int64_t> out_shape(x_shape.begin(), x_shape.end() - 1);
    out_shape.push_back(out_features);
    
    return output.view(out_shape);
}

/*

 * Advanced optimization: Ternary matrix multiplication using Tensor Cores

 * 

 * Modern GPUs (Volta+) have Tensor Cores that accelerate matrix operations.

 * While designed for FP16/INT8, we can potentially leverage them for ternary

 * operations by packing ternary values into INT4/INT8 formats.

 * 

 * This is a future optimization once basic kernels are working.

 * 

 * Potential approaches:

 *   1. Pack ternary values into INT8 and use INT8 Tensor Cores

 *   2. Use FP16 with ternary values for FP16 Tensor Cores

 *   3. Custom WMMA (Warp Matrix Multiply Accumulate) implementation

 */

/*

 * CUDA kernel for packing ternary weights to base-3 representation

 * 

 * Maps {-1, 0, +1} to {0, 1, 2} and packs 5 values per byte.

 * Each thread handles multiple output bytes for efficiency.

 */
template <typename scalar_t>
__global__ void pack_ternary_kernel(

    const scalar_t* __restrict__ input,  // Flat ternary weights

    uint8_t* __restrict__ output,        // Packed output

    int64_t numel,                       // Number of input elements

    int64_t packed_size                  // Number of output bytes

) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    
    if (idx < packed_size) {
        int64_t base_idx = idx * 5;
        uint8_t packed_val = 0;
        uint8_t powers[5] = {1, 3, 9, 27, 81};
        
        #pragma unroll
        for (int j = 0; j < 5; j++) {
            int64_t in_idx = base_idx + j;
            if (in_idx < numel) {
                // Map {-1, 0, +1} to {0, 1, 2}
                int8_t val = static_cast<int8_t>(input[in_idx]) + 1;
                packed_val += static_cast<uint8_t>(val) * powers[j];
            } else {
                // Pad with 1 (representing 0)
                packed_val += 1 * powers[j];
            }
        }
        output[idx] = packed_val;
    }
}

/*

 * CUDA kernel for unpacking base-3 ternary weights

 * 

 * Extracts 5 values per byte and maps {0, 1, 2} back to {-1, 0, +1}.

 */
template <typename scalar_t>
__global__ void unpack_ternary_kernel(

    const uint8_t* __restrict__ input,   // Packed input

    scalar_t* __restrict__ output,       // Unpacked output

    int64_t numel,                       // Number of output elements

    int64_t packed_size                  // Number of input bytes

) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    
    if (idx < packed_size) {
        int64_t base_idx = idx * 5;
        uint8_t packed_val = input[idx];
        
        #pragma unroll
        for (int j = 0; j < 5 && base_idx + j < numel; j++) {
            uint8_t val = packed_val % 3;
            packed_val /= 3;
            
            // Map {0, 1, 2} to {-1, 0, +1}
            output[base_idx + j] = static_cast<scalar_t>(val) - scalar_t(1);
        }
    }
}

/*

 * GPU-accelerated packing launcher

 */
torch::Tensor pack_ternary_cuda(torch::Tensor W_ternary) {
    auto flat = W_ternary.flatten().contiguous();
    int64_t numel = flat.numel();
    int64_t packed_size = (numel + 4) / 5;
    
    auto packed = torch::zeros({packed_size}, 
        torch::dtype(torch::kUInt8).device(W_ternary.device()));
    
    const int threads = 256;
    const int blocks = (packed_size + threads - 1) / threads;
    
    auto stream = at::cuda::getCurrentCUDAStream();
    
    AT_DISPATCH_FLOATING_TYPES(W_ternary.scalar_type(), "pack_ternary_cuda", ([&] {
        pack_ternary_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
            flat.data_ptr<scalar_t>(),
            packed.data_ptr<uint8_t>(),
            numel,
            packed_size
        );
    }));
    
    return packed;
}

/*

 * GPU-accelerated unpacking launcher

 */
torch::Tensor unpack_ternary_cuda(

    torch::Tensor packed, 

    std::vector<int64_t> original_shape,

    torch::ScalarType dtype

) {
    int64_t numel = 1;
    for (auto dim : original_shape) {
        numel *= dim;
    }
    
    auto packed_flat = packed.flatten().contiguous();
    int64_t packed_size = packed_flat.numel();
    
    auto unpacked = torch::zeros({numel}, 
        torch::dtype(dtype).device(packed.device()));
    
    const int threads = 256;
    const int blocks = (packed_size + threads - 1) / threads;
    
    auto stream = at::cuda::getCurrentCUDAStream();
    
    AT_DISPATCH_FLOATING_TYPES(dtype, "unpack_ternary_cuda", ([&] {
        unpack_ternary_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
            packed_flat.data_ptr<uint8_t>(),
            unpacked.data_ptr<scalar_t>(),
            numel,
            packed_size
        );
    }));
    
    return unpacked.view(original_shape);
}

// End of CUDA kernels