Update README.md
Browse files
README.md
CHANGED
|
@@ -75,27 +75,9 @@ The figure below shows results from knowledge recall evaluation experiments of B
|
|
| 75 |
|
| 76 |
### Retrieval Augmented Generation (RAG)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
import chromadb
|
| 80 |
-
from llama_index import VectorStoreIndex, SimpleDirectoryReader
|
| 81 |
-
from chromadb.config import Settings
|
| 82 |
-
from llama_index.vector_stores import ChromaVectorStore
|
| 83 |
-
from llama_index.storage.storage_context import StorageContext
|
| 84 |
|
| 85 |
-
|
| 86 |
-
coll_path='./Bioinspired_Chroma' ## PATH TO CHROMA DATABASE
|
| 87 |
-
|
| 88 |
-
client = chromadb.PersistentClient(path=coll_path)
|
| 89 |
-
collection = client.get_collection (name=coll_name,)
|
| 90 |
-
|
| 91 |
-
db2 = chromadb.PersistentClient(path=coll_path)
|
| 92 |
-
chroma_collection = db2.get_or_create_collection(coll_name)
|
| 93 |
-
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 94 |
-
|
| 95 |
-
chroma_collection.count()
|
| 96 |
-
```
|
| 97 |
-
|
| 98 |
-
Set up BioinspiredLMM as custom LLM:
|
| 99 |
|
| 100 |
|
| 101 |
```
|
|
@@ -124,6 +106,29 @@ llm_custom = HuggingFaceLLM(context_window=2048,
|
|
| 124 |
tokenizer=tokenizer)
|
| 125 |
llm_custom.model_name='BioinspiredLLM'
|
| 126 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
Set up custom LLM service context and vector store indedx:
|
| 128 |
```
|
| 129 |
from llama_index.llms import LlamaCPP
|
|
@@ -134,12 +139,12 @@ from llama_index.llms.llama_utils import (
|
|
| 134 |
)
|
| 135 |
|
| 136 |
service_context = ServiceContext.from_defaults(
|
| 137 |
-
|
| 138 |
chunk_size=1024,
|
| 139 |
embed_model="local:BAAI/bge-large-en"
|
| 140 |
)
|
| 141 |
index = VectorStoreIndex.from_vector_store(
|
| 142 |
-
|
| 143 |
service_context=service_context,
|
| 144 |
)
|
| 145 |
```
|
|
@@ -158,3 +163,33 @@ question = "Which horn does not have tubules? A) big horn sheep B) pronghorn C)
|
|
| 158 |
response = query_engine.query(question)
|
| 159 |
display(Markdown(f"<b>{response}</b>"))
|
| 160 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
### Retrieval Augmented Generation (RAG)
|
| 77 |
|
| 78 |
+
Example based on Llama Index.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
First, set up BioinspiredLMM as custom LLM:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
```
|
|
|
|
| 106 |
tokenizer=tokenizer)
|
| 107 |
llm_custom.model_name='BioinspiredLLM'
|
| 108 |
```
|
| 109 |
+
|
| 110 |
+
Use Chroma database collection (for the purpose of this example it has already been created, load here):
|
| 111 |
+
|
| 112 |
+
```
|
| 113 |
+
import chromadb
|
| 114 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader
|
| 115 |
+
from chromadb.config import Settings
|
| 116 |
+
from llama_index.vector_stores import ChromaVectorStore
|
| 117 |
+
from llama_index.storage.storage_context import StorageContext
|
| 118 |
+
|
| 119 |
+
coll_name="Bioinspired"
|
| 120 |
+
coll_path='./Bioinspired_Chroma' ## PATH TO CHROMA DATABASE
|
| 121 |
+
|
| 122 |
+
client = chromadb.PersistentClient(path=coll_path)
|
| 123 |
+
collection = client.get_collection (name=coll_name,)
|
| 124 |
+
|
| 125 |
+
db2 = chromadb.PersistentClient(path=coll_path)
|
| 126 |
+
chroma_collection = db2.get_or_create_collection(coll_name)
|
| 127 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 128 |
+
|
| 129 |
+
chroma_collection.count()
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
Set up custom LLM service context and vector store indedx:
|
| 133 |
```
|
| 134 |
from llama_index.llms import LlamaCPP
|
|
|
|
| 139 |
)
|
| 140 |
|
| 141 |
service_context = ServiceContext.from_defaults(
|
| 142 |
+
llm=llm_custom,
|
| 143 |
chunk_size=1024,
|
| 144 |
embed_model="local:BAAI/bge-large-en"
|
| 145 |
)
|
| 146 |
index = VectorStoreIndex.from_vector_store(
|
| 147 |
+
vector_store,
|
| 148 |
service_context=service_context,
|
| 149 |
)
|
| 150 |
```
|
|
|
|
| 163 |
response = query_engine.query(question)
|
| 164 |
display(Markdown(f"<b>{response}</b>"))
|
| 165 |
```
|
| 166 |
+
|
| 167 |
+
Alternatively, load new documents, here with all-mpnet-base-v2 embeddings:
|
| 168 |
+
```
|
| 169 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 170 |
+
embeddings = HuggingFaceEmbeddings(
|
| 171 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 172 |
+
)
|
| 173 |
+
documents_graph = SimpleDirectoryReader(
|
| 174 |
+
input_files=[
|
| 175 |
+
"./XXXXXXXXXX/XXXXX.pdf",
|
| 176 |
+
]
|
| 177 |
+
).load_data()
|
| 178 |
+
index_doc = VectorStoreIndex.from_documents(documents_graph, service_context=
|
| 179 |
+
service_context,
|
| 180 |
+
show_progress=True,
|
| 181 |
+
embeddings=embeddings,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
```
|
| 185 |
+
Query:
|
| 186 |
+
```
|
| 187 |
+
question="Which rapid prototyping techniques would be useful for creating hierarchical, bio-inspired materials?"
|
| 188 |
+
|
| 189 |
+
response = index_doc.as_query_engine(service_context=service_context,
|
| 190 |
+
response_mode="tree_summarize",
|
| 191 |
+
similarity_top_k=5,
|
| 192 |
+
).query(question,
|
| 193 |
+
)
|
| 194 |
+
print(response)
|
| 195 |
+
```
|