leiwx52 commited on
Commit
b25f4f3
·
verified ·
1 Parent(s): 3cc8872

Upload folder using huggingface_hub

Browse files
Files changed (22) hide show
  1. .gitattributes +1 -0
  2. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/added_tokens.json +28 -0
  3. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/args.json +388 -0
  4. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/chat_template.jinja +120 -0
  5. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/config.json +69 -0
  6. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/generation_config.json +13 -0
  7. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/latest +1 -0
  8. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/merges.txt +0 -0
  9. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00001-of-00004.safetensors +3 -0
  10. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00002-of-00004.safetensors +3 -0
  11. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00003-of-00004.safetensors +3 -0
  12. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00004-of-00004.safetensors +3 -0
  13. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model.safetensors.index.json +758 -0
  14. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/preprocessor_config.json +21 -0
  15. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/special_tokens_map.json +31 -0
  16. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/tokenizer.json +3 -0
  17. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/tokenizer_config.json +240 -0
  18. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/trainer_state.json +2253 -0
  19. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/training_args.bin +3 -0
  20. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/video_preprocessor_config.json +41 -0
  21. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/vocab.json +0 -0
  22. qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/zero_to_fp32.py +760 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  qwen3vl_8b_click100k_lora_gb200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  qwen3vl_8b_click100k_fullsft_gb200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  qwen3vl_8b_click100k_lora_gb200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  qwen3vl_8b_click100k_fullsft_gb200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/args.json ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_dir": "/workspace/weixian/workplace/ms_swift_project/ms-swift/output/qwen3vl_8b_sft_full_click100k/v0-20260115-130150",
3
+ "overwrite_output_dir": false,
4
+ "do_train": false,
5
+ "do_eval": false,
6
+ "do_predict": false,
7
+ "eval_strategy": "no",
8
+ "prediction_loss_only": false,
9
+ "per_device_train_batch_size": 16,
10
+ "per_device_eval_batch_size": 1,
11
+ "per_gpu_train_batch_size": null,
12
+ "per_gpu_eval_batch_size": null,
13
+ "gradient_accumulation_steps": 1,
14
+ "eval_accumulation_steps": null,
15
+ "eval_delay": 0,
16
+ "torch_empty_cache_steps": null,
17
+ "learning_rate": 1e-05,
18
+ "weight_decay": 0.1,
19
+ "adam_beta1": 0.9,
20
+ "adam_beta2": 0.95,
21
+ "adam_epsilon": 1e-08,
22
+ "max_grad_norm": 1.0,
23
+ "num_train_epochs": 1.0,
24
+ "max_steps": -1,
25
+ "lr_scheduler_type": "cosine",
26
+ "lr_scheduler_kwargs": null,
27
+ "warmup_ratio": 0.05,
28
+ "warmup_steps": 0,
29
+ "log_level": "passive",
30
+ "log_level_replica": "warning",
31
+ "log_on_each_node": true,
32
+ "logging_dir": "/workspace/weixian/workplace/ms_swift_project/ms-swift/output/qwen3vl_8b_sft_full_click100k/v0-20260115-130150/runs",
33
+ "logging_strategy": "steps",
34
+ "logging_first_step": true,
35
+ "logging_steps": 5,
36
+ "logging_nan_inf_filter": true,
37
+ "save_strategy": "steps",
38
+ "save_steps": 100.0,
39
+ "save_total_limit": 2,
40
+ "save_safetensors": true,
41
+ "save_on_each_node": false,
42
+ "save_only_model": false,
43
+ "restore_callback_states_from_checkpoint": false,
44
+ "no_cuda": false,
45
+ "use_cpu": false,
46
+ "use_mps_device": false,
47
+ "seed": 42,
48
+ "data_seed": 42,
49
+ "jit_mode_eval": false,
50
+ "bf16": true,
51
+ "fp16": false,
52
+ "fp16_opt_level": "O1",
53
+ "half_precision_backend": "auto",
54
+ "bf16_full_eval": false,
55
+ "fp16_full_eval": false,
56
+ "tf32": null,
57
+ "local_rank": 0,
58
+ "ddp_backend": null,
59
+ "tpu_num_cores": null,
60
+ "tpu_metrics_debug": false,
61
+ "debug": null,
62
+ "dataloader_drop_last": false,
63
+ "eval_steps": 100.0,
64
+ "dataloader_num_workers": 8,
65
+ "dataloader_prefetch_factor": null,
66
+ "past_index": -1,
67
+ "run_name": "/workspace/weixian/workplace/ms_swift_project/ms-swift/output/qwen3vl_8b_sft_full_click100k/v0-20260115-130150",
68
+ "disable_tqdm": null,
69
+ "remove_unused_columns": true,
70
+ "label_names": null,
71
+ "load_best_model_at_end": false,
72
+ "metric_for_best_model": "loss",
73
+ "greater_is_better": false,
74
+ "ignore_data_skip": false,
75
+ "fsdp": [],
76
+ "fsdp_min_num_params": 0,
77
+ "fsdp_config": null,
78
+ "fsdp_transformer_layer_cls_to_wrap": null,
79
+ "accelerator_config": {
80
+ "dispatch_batches": false
81
+ },
82
+ "parallelism_config": null,
83
+ "deepspeed": {
84
+ "fp16": {
85
+ "enabled": "auto",
86
+ "loss_scale": 0,
87
+ "loss_scale_window": 1000,
88
+ "initial_scale_power": 16,
89
+ "hysteresis": 2,
90
+ "min_loss_scale": 1
91
+ },
92
+ "bf16": {
93
+ "enabled": "auto"
94
+ },
95
+ "zero_optimization": {
96
+ "stage": 1,
97
+ "offload_optimizer": {
98
+ "device": "none",
99
+ "pin_memory": true
100
+ },
101
+ "allgather_partitions": true,
102
+ "allgather_bucket_size": 200000000.0,
103
+ "overlap_comm": false,
104
+ "reduce_scatter": true,
105
+ "reduce_bucket_size": 200000000.0,
106
+ "contiguous_gradients": true
107
+ },
108
+ "gradient_accumulation_steps": "auto",
109
+ "gradient_clipping": "auto",
110
+ "steps_per_print": 2000,
111
+ "train_batch_size": "auto",
112
+ "train_micro_batch_size_per_gpu": "auto",
113
+ "wall_clock_breakdown": false
114
+ },
115
+ "label_smoothing_factor": 0.0,
116
+ "optim": "adamw_torch_fused",
117
+ "optim_args": null,
118
+ "adafactor": false,
119
+ "group_by_length": false,
120
+ "length_column_name": "length",
121
+ "report_to": [
122
+ "tensorboard"
123
+ ],
124
+ "project": "huggingface",
125
+ "trackio_space_id": "trackio",
126
+ "ddp_find_unused_parameters": null,
127
+ "ddp_bucket_cap_mb": null,
128
+ "ddp_broadcast_buffers": null,
129
+ "dataloader_pin_memory": true,
130
+ "dataloader_persistent_workers": false,
131
+ "skip_memory_metrics": true,
132
+ "use_legacy_prediction_loop": false,
133
+ "push_to_hub": false,
134
+ "resume_from_checkpoint": null,
135
+ "hub_model_id": null,
136
+ "hub_strategy": "every_save",
137
+ "hub_token": null,
138
+ "hub_private_repo": null,
139
+ "hub_always_push": false,
140
+ "hub_revision": null,
141
+ "gradient_checkpointing": true,
142
+ "gradient_checkpointing_kwargs": null,
143
+ "include_inputs_for_metrics": false,
144
+ "include_for_metrics": [],
145
+ "eval_do_concat_batches": true,
146
+ "fp16_backend": "auto",
147
+ "push_to_hub_model_id": null,
148
+ "push_to_hub_organization": null,
149
+ "push_to_hub_token": null,
150
+ "mp_parameters": "",
151
+ "auto_find_batch_size": false,
152
+ "full_determinism": false,
153
+ "torchdynamo": null,
154
+ "ray_scope": "last",
155
+ "ddp_timeout": 18000000,
156
+ "torch_compile": false,
157
+ "torch_compile_backend": null,
158
+ "torch_compile_mode": null,
159
+ "include_tokens_per_second": false,
160
+ "include_num_input_tokens_seen": false,
161
+ "neftune_noise_alpha": null,
162
+ "optim_target_modules": null,
163
+ "batch_eval_metrics": false,
164
+ "eval_on_start": false,
165
+ "use_liger_kernel": true,
166
+ "liger_kernel_config": null,
167
+ "eval_use_gather_object": false,
168
+ "average_tokens_across_devices": true,
169
+ "sortish_sampler": false,
170
+ "predict_with_generate": false,
171
+ "generation_max_length": null,
172
+ "generation_num_beams": null,
173
+ "generation_config": null,
174
+ "tuner_backend": "peft",
175
+ "vit_gradient_checkpointing": null,
176
+ "router_aux_loss_coef": 0.0,
177
+ "enable_dft_loss": false,
178
+ "enable_channel_loss": false,
179
+ "check_model": true,
180
+ "acc_strategy": "token",
181
+ "train_dataloader_shuffle": true,
182
+ "max_epochs": null,
183
+ "aligner_lr": null,
184
+ "vit_lr": null,
185
+ "use_logits_to_keep": null,
186
+ "ds3_gather_for_generation": true,
187
+ "resume_only_model": false,
188
+ "optimizer": null,
189
+ "loss_type": null,
190
+ "metric": null,
191
+ "eval_use_evalscope": false,
192
+ "eval_dataset": [],
193
+ "eval_dataset_args": null,
194
+ "eval_limit": null,
195
+ "eval_generation_config": null,
196
+ "extra_eval_args": null,
197
+ "use_flash_ckpt": false,
198
+ "use_ray": false,
199
+ "ray_exp_name": null,
200
+ "device_groups": null,
201
+ "model": "/workspace/weixian/ckpt/Qwen3-VL-8B-Instruct",
202
+ "model_type": "qwen3_vl",
203
+ "model_revision": null,
204
+ "task_type": "causal_lm",
205
+ "torch_dtype": "bfloat16",
206
+ "attn_impl": "flash_attn",
207
+ "new_special_tokens": [],
208
+ "num_labels": null,
209
+ "problem_type": null,
210
+ "rope_scaling": null,
211
+ "device_map": null,
212
+ "max_memory": {},
213
+ "max_model_len": null,
214
+ "local_repo_path": null,
215
+ "init_strategy": null,
216
+ "template": "qwen3_vl",
217
+ "system": null,
218
+ "max_length": 16384,
219
+ "truncation_strategy": "delete",
220
+ "max_pixels": null,
221
+ "agent_template": null,
222
+ "norm_bbox": null,
223
+ "use_chat_template": true,
224
+ "padding_side": "right",
225
+ "padding_free": true,
226
+ "loss_scale": "default",
227
+ "sequence_parallel_size": 1,
228
+ "template_backend": "swift",
229
+ "response_prefix": null,
230
+ "enable_thinking": null,
231
+ "add_non_thinking_prefix": true,
232
+ "dataset": [
233
+ "/workspace/data/processed/Click-100k/Click100k.jsonl"
234
+ ],
235
+ "val_dataset": [],
236
+ "cached_dataset": [],
237
+ "cached_val_dataset": [],
238
+ "split_dataset_ratio": 0.0,
239
+ "dataset_num_proc": 8,
240
+ "load_from_cache_file": false,
241
+ "dataset_shuffle": true,
242
+ "val_dataset_shuffle": false,
243
+ "streaming": false,
244
+ "interleave_prob": null,
245
+ "stopping_strategy": "first_exhausted",
246
+ "shuffle_buffer_size": 1000,
247
+ "download_mode": "reuse_dataset_if_exists",
248
+ "columns": {},
249
+ "strict": false,
250
+ "model_name": null,
251
+ "model_author": null,
252
+ "custom_dataset_info": [],
253
+ "quant_method": null,
254
+ "quant_bits": null,
255
+ "hqq_axis": null,
256
+ "bnb_4bit_compute_dtype": "bfloat16",
257
+ "bnb_4bit_quant_type": "nf4",
258
+ "bnb_4bit_use_double_quant": true,
259
+ "bnb_4bit_quant_storage": null,
260
+ "max_new_tokens": 64,
261
+ "temperature": 0.0,
262
+ "top_k": null,
263
+ "top_p": null,
264
+ "repetition_penalty": null,
265
+ "num_beams": 1,
266
+ "stream": false,
267
+ "stop_words": [],
268
+ "logprobs": false,
269
+ "top_logprobs": null,
270
+ "structured_outputs_regex": null,
271
+ "ckpt_dir": null,
272
+ "lora_modules": [],
273
+ "train_type": "full",
274
+ "adapters": [],
275
+ "external_plugins": [],
276
+ "model_kwargs": {},
277
+ "load_args": false,
278
+ "load_data_args": false,
279
+ "packing": false,
280
+ "packing_length": null,
281
+ "packing_num_proc": 1,
282
+ "lazy_tokenize": true,
283
+ "custom_register_path": [],
284
+ "use_hf": false,
285
+ "ignore_args_error": false,
286
+ "use_swift_lora": false,
287
+ "freeze_parameters": [
288
+ "model.visual",
289
+ "model.visual.merger",
290
+ "model.visual.deepstack_merger_list"
291
+ ],
292
+ "freeze_parameters_regex": null,
293
+ "freeze_parameters_ratio": 0.0,
294
+ "trainable_parameters": [],
295
+ "trainable_parameters_regex": null,
296
+ "freeze_llm": false,
297
+ "freeze_vit": true,
298
+ "freeze_aligner": true,
299
+ "target_modules": [
300
+ "all-linear"
301
+ ],
302
+ "target_regex": null,
303
+ "target_parameters": null,
304
+ "modules_to_save": [],
305
+ "lora_rank": 8,
306
+ "lora_alpha": 32,
307
+ "lora_dropout": 0.05,
308
+ "lora_bias": "none",
309
+ "lora_dtype": null,
310
+ "lorap_lr_ratio": null,
311
+ "use_rslora": false,
312
+ "use_dora": false,
313
+ "lora_ga_batch_size": 2,
314
+ "lora_ga_iters": 2,
315
+ "lora_ga_max_length": 1024,
316
+ "lora_ga_direction": "ArB2r",
317
+ "lora_ga_scale": "stable",
318
+ "lora_ga_stable_gamma": 16,
319
+ "init_weights": true,
320
+ "fourier_n_frequency": 2000,
321
+ "fourier_scaling": 300.0,
322
+ "boft_block_size": 4,
323
+ "boft_block_num": 0,
324
+ "boft_n_butterfly_factor": 1,
325
+ "boft_dropout": 0.0,
326
+ "vera_rank": 256,
327
+ "vera_projection_prng_key": 0,
328
+ "vera_dropout": 0.0,
329
+ "vera_d_initial": 0.1,
330
+ "adapter_act": "gelu",
331
+ "adapter_length": 128,
332
+ "use_galore": false,
333
+ "galore_target_modules": null,
334
+ "galore_rank": 128,
335
+ "galore_update_proj_gap": 50,
336
+ "galore_scale": 1.0,
337
+ "galore_proj_type": "std",
338
+ "galore_optim_per_parameter": false,
339
+ "galore_with_embedding": false,
340
+ "galore_quantization": false,
341
+ "galore_proj_quant": false,
342
+ "galore_proj_bits": 4,
343
+ "galore_proj_group_size": 256,
344
+ "galore_cos_threshold": 0.4,
345
+ "galore_gamma_proj": 2,
346
+ "galore_queue_size": 5,
347
+ "adalora_target_r": 8,
348
+ "adalora_init_r": 12,
349
+ "adalora_tinit": 0,
350
+ "adalora_tfinal": 0,
351
+ "adalora_deltaT": 1,
352
+ "adalora_beta1": 0.85,
353
+ "adalora_beta2": 0.85,
354
+ "adalora_orth_reg_weight": 0.5,
355
+ "llamapro_num_new_blocks": 4,
356
+ "llamapro_num_groups": null,
357
+ "lisa_activated_layers": 0,
358
+ "lisa_step_interval": 20,
359
+ "reft_layer_key": null,
360
+ "reft_layers": null,
361
+ "reft_rank": 4,
362
+ "reft_intervention_type": "LoreftIntervention",
363
+ "reft_args": null,
364
+ "swanlab_token": null,
365
+ "swanlab_project": "ms-swift",
366
+ "swanlab_workspace": null,
367
+ "swanlab_exp_name": null,
368
+ "swanlab_notification_method": null,
369
+ "swanlab_webhook_url": null,
370
+ "swanlab_secret": null,
371
+ "swanlab_mode": "cloud",
372
+ "add_version": true,
373
+ "create_checkpoint_symlink": false,
374
+ "zero_hpz_partition_size": null,
375
+ "deepspeed_autotp_size": null,
376
+ "early_stop_interval": null,
377
+ "rank": 0,
378
+ "global_world_size": 4,
379
+ "local_world_size": 4,
380
+ "model_suffix": "Qwen3-VL-8B-Instruct",
381
+ "model_info": "ModelInfo(model_type='qwen3_vl', model_dir='/workspace/weixian/ckpt/Qwen3-VL-8B-Instruct', torch_dtype=torch.bfloat16, max_model_len=262144, quant_method=None, quant_bits=None, rope_scaling={'mrope_interleaved': True, 'mrope_section': [24, 20, 20], 'rope_type': 'default'}, is_moe_model=False, is_multimodal=True, config=None, task_type='causal_lm', num_labels=None)",
382
+ "model_meta": "ModelMeta(model_type='qwen3_vl', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen3-VL-2B-Instruct', hf_model_id='Qwen/Qwen3-VL-2B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-2B-Thinking', hf_model_id='Qwen/Qwen3-VL-2B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-2B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-2B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-2B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-2B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Instruct', hf_model_id='Qwen/Qwen3-VL-4B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Thinking', hf_model_id='Qwen/Qwen3-VL-4B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-4B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-4B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-4B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Instruct', hf_model_id='Qwen/Qwen3-VL-8B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Thinking', hf_model_id='Qwen/Qwen3-VL-8B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-8B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-8B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-8B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Instruct', hf_model_id='Qwen/Qwen3-VL-32B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Thinking', hf_model_id='Qwen/Qwen3-VL-32B-Thinking', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Instruct-FP8', hf_model_id='Qwen/Qwen3-VL-32B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen3-VL-32B-Thinking-FP8', hf_model_id='Qwen/Qwen3-VL-32B-Thinking-FP8', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen3_vl', get_function=<function get_model_tokenizer_qwen3_vl at 0xfffc209547c0>, model_arch=MultiModelKeys(arch_name='qwen3_vl', embedding=None, module_list=None, lm_head=None, q_proj=None, k_proj=None, v_proj=None, o_proj=None, attention=None, mlp=None, down_proj=None, qkv_proj=None, qk_proj=None, qa_proj=None, qb_proj=None, kv_proj=None, kva_proj=None, kvb_proj=None, language_model=['model.language_model', 'lm_head'], aligner=['model.visual.merger', 'model.visual.deepstack_merger_list'], vision_tower=['model.visual'], generator=[]), architectures=['Qwen3VLForConditionalGeneration'], additional_saved_files=[], torch_dtype=None, is_multimodal=True, is_reward=False, is_reranker=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.57', 'qwen_vl_utils>=0.0.14', 'decord'], tags=['vision', 'video'])",
383
+ "model_dir": "/workspace/weixian/ckpt/Qwen3-VL-8B-Instruct",
384
+ "_val_dataset_exists": [],
385
+ "hub": "<class 'swift.hub.hub.MSHub'>",
386
+ "evaluation_strategy": "steps",
387
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/workspace/weixian/workplace/ms_swift_project/ms-swift/output/qwen3vl_8b_sft_full_click100k/v0-20260115-130150', overwrite_output_dir=False, do_train=False, do_eval=False, do_predict=False, eval_strategy=<IntervalStrategy.NO: 'no'>, prediction_loss_only=False, per_device_train_batch_size=16, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/workspace/weixian/workplace/ms_swift_project/ms-swift/output/qwen3vl_8b_sft_full_click100k/v0-20260115-130150/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=100, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=100.0, dataloader_num_workers=8, dataloader_prefetch_factor=2, past_index=-1, run_name='/workspace/weixian/workplace/ms_swift_project/ms-swift/output/qwen3vl_8b_sft_full_click100k/v0-20260115-130150', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), parallelism_config=None, deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 1, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'allgather_partitions': True, 'allgather_bucket_size': 200000000.0, 'overlap_comm': False, 'reduce_scatter': True, 'reduce_bucket_size': 200000000.0, 'contiguous_gradients': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH_FUSED: 'adamw_torch_fused'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], project='huggingface', trackio_space_id='trackio', ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, hub_revision=None, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=18000000, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=True, liger_kernel_config=None, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, tuner_backend='peft', vit_gradient_checkpointing=True, router_aux_loss_coef=0.0, enable_dft_loss=False, enable_channel_loss=False, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, use_logits_to_keep=None, ds3_gather_for_generation=True, resume_only_model=False, optimizer=None, loss_type=None, metric=None, eval_use_evalscope=False, eval_dataset=[], eval_dataset_args=None, eval_limit=None, eval_generation_config=None, extra_eval_args=None, use_flash_ckpt=False, sft_alpha=0, chord_sft_dataset=[], chord_sft_per_device_train_batch_size=None, chord_enable_phi_function=False, chord_mu_warmup_steps=None, chord_mu_decay_steps=None, chord_mu_peak=None, chord_mu_valley=None, train_type='full', local_repo_path=None, galore_config=None, task_type='causal_lm', problem_type=None)"
388
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/chat_template.jinja ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {%- if messages[0].content is string %}
5
+ {{- messages[0].content }}
6
+ {%- else %}
7
+ {%- for content in messages[0].content %}
8
+ {%- if 'text' in content %}
9
+ {{- content.text }}
10
+ {%- endif %}
11
+ {%- endfor %}
12
+ {%- endif %}
13
+ {{- '\n\n' }}
14
+ {%- endif %}
15
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
16
+ {%- for tool in tools %}
17
+ {{- "\n" }}
18
+ {{- tool | tojson }}
19
+ {%- endfor %}
20
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
21
+ {%- else %}
22
+ {%- if messages[0].role == 'system' %}
23
+ {{- '<|im_start|>system\n' }}
24
+ {%- if messages[0].content is string %}
25
+ {{- messages[0].content }}
26
+ {%- else %}
27
+ {%- for content in messages[0].content %}
28
+ {%- if 'text' in content %}
29
+ {{- content.text }}
30
+ {%- endif %}
31
+ {%- endfor %}
32
+ {%- endif %}
33
+ {{- '<|im_end|>\n' }}
34
+ {%- endif %}
35
+ {%- endif %}
36
+ {%- set image_count = namespace(value=0) %}
37
+ {%- set video_count = namespace(value=0) %}
38
+ {%- for message in messages %}
39
+ {%- if message.role == "user" %}
40
+ {{- '<|im_start|>' + message.role + '\n' }}
41
+ {%- if message.content is string %}
42
+ {{- message.content }}
43
+ {%- else %}
44
+ {%- for content in message.content %}
45
+ {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
46
+ {%- set image_count.value = image_count.value + 1 %}
47
+ {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
48
+ <|vision_start|><|image_pad|><|vision_end|>
49
+ {%- elif content.type == 'video' or 'video' in content %}
50
+ {%- set video_count.value = video_count.value + 1 %}
51
+ {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
52
+ <|vision_start|><|video_pad|><|vision_end|>
53
+ {%- elif 'text' in content %}
54
+ {{- content.text }}
55
+ {%- endif %}
56
+ {%- endfor %}
57
+ {%- endif %}
58
+ {{- '<|im_end|>\n' }}
59
+ {%- elif message.role == "assistant" %}
60
+ {{- '<|im_start|>' + message.role + '\n' }}
61
+ {%- if message.content is string %}
62
+ {{- message.content }}
63
+ {%- else %}
64
+ {%- for content_item in message.content %}
65
+ {%- if 'text' in content_item %}
66
+ {{- content_item.text }}
67
+ {%- endif %}
68
+ {%- endfor %}
69
+ {%- endif %}
70
+ {%- if message.tool_calls %}
71
+ {%- for tool_call in message.tool_calls %}
72
+ {%- if (loop.first and message.content) or (not loop.first) %}
73
+ {{- '\n' }}
74
+ {%- endif %}
75
+ {%- if tool_call.function %}
76
+ {%- set tool_call = tool_call.function %}
77
+ {%- endif %}
78
+ {{- '<tool_call>\n{"name": "' }}
79
+ {{- tool_call.name }}
80
+ {{- '", "arguments": ' }}
81
+ {%- if tool_call.arguments is string %}
82
+ {{- tool_call.arguments }}
83
+ {%- else %}
84
+ {{- tool_call.arguments | tojson }}
85
+ {%- endif %}
86
+ {{- '}\n</tool_call>' }}
87
+ {%- endfor %}
88
+ {%- endif %}
89
+ {{- '<|im_end|>\n' }}
90
+ {%- elif message.role == "tool" %}
91
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
92
+ {{- '<|im_start|>user' }}
93
+ {%- endif %}
94
+ {{- '\n<tool_response>\n' }}
95
+ {%- if message.content is string %}
96
+ {{- message.content }}
97
+ {%- else %}
98
+ {%- for content in message.content %}
99
+ {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
100
+ {%- set image_count.value = image_count.value + 1 %}
101
+ {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
102
+ <|vision_start|><|image_pad|><|vision_end|>
103
+ {%- elif content.type == 'video' or 'video' in content %}
104
+ {%- set video_count.value = video_count.value + 1 %}
105
+ {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
106
+ <|vision_start|><|video_pad|><|vision_end|>
107
+ {%- elif 'text' in content %}
108
+ {{- content.text }}
109
+ {%- endif %}
110
+ {%- endfor %}
111
+ {%- endif %}
112
+ {{- '\n</tool_response>' }}
113
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
114
+ {{- '<|im_end|>\n' }}
115
+ {%- endif %}
116
+ {%- endif %}
117
+ {%- endfor %}
118
+ {%- if add_generation_prompt %}
119
+ {{- '<|im_start|>assistant\n' }}
120
+ {%- endif %}
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3VLForConditionalGeneration"
4
+ ],
5
+ "dtype": "bfloat16",
6
+ "eos_token_id": 151645,
7
+ "hidden_size": 4096,
8
+ "image_token_id": 151655,
9
+ "model_type": "qwen3_vl",
10
+ "pad_token_id": 151643,
11
+ "text_config": {
12
+ "attention_bias": false,
13
+ "attention_dropout": 0.0,
14
+ "bos_token_id": 151643,
15
+ "dtype": "bfloat16",
16
+ "eos_token_id": 151645,
17
+ "head_dim": 128,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 4096,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 12288,
22
+ "max_position_embeddings": 262144,
23
+ "model_type": "qwen3_vl_text",
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 36,
26
+ "num_key_value_heads": 8,
27
+ "pad_token_id": 151643,
28
+ "rms_norm_eps": 1e-06,
29
+ "rope_scaling": {
30
+ "mrope_interleaved": true,
31
+ "mrope_section": [
32
+ 24,
33
+ 20,
34
+ 20
35
+ ],
36
+ "rope_type": "default"
37
+ },
38
+ "rope_theta": 5000000,
39
+ "use_cache": false,
40
+ "vocab_size": 151936
41
+ },
42
+ "tie_word_embeddings": false,
43
+ "transformers_version": "4.57.3",
44
+ "video_token_id": 151656,
45
+ "vision_config": {
46
+ "deepstack_visual_indexes": [
47
+ 8,
48
+ 16,
49
+ 24
50
+ ],
51
+ "depth": 27,
52
+ "dtype": "bfloat16",
53
+ "hidden_act": "gelu_pytorch_tanh",
54
+ "hidden_size": 1152,
55
+ "in_channels": 3,
56
+ "initializer_range": 0.02,
57
+ "intermediate_size": 4304,
58
+ "model_type": "qwen3_vl",
59
+ "num_heads": 16,
60
+ "num_position_embeddings": 2304,
61
+ "out_hidden_size": 4096,
62
+ "pad_token_id": 151643,
63
+ "patch_size": 16,
64
+ "spatial_merge_size": 2,
65
+ "temporal_patch_size": 2
66
+ },
67
+ "vision_end_token_id": 151653,
68
+ "vision_start_token_id": 151652
69
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.7,
10
+ "top_k": 20,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.57.3"
13
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1583
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eee470ef490dabd6f67751aeab05ea34952c5a96479fd49b38aabb6bebb4ef0
3
+ size 4998056552
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86b1bb56a453d94c64e8558f82acaf610ed237da1749906cc568553b83566d4c
3
+ size 4915962464
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1833d1fc2ca299a8f879a5e17f5c2054b8ef81a2c410e87b685746942fcce81
3
+ size 4915962496
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a9ecee5e948ad30ffacea98e7d03738a1cf748fcee670fe7b9edac0e3b3dfbc
3
+ size 2704357976
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/model.safetensors.index.json ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8767123696,
4
+ "total_size": 17534247392
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.language_model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.language_model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.language_model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.language_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.language_model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.language_model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.language_model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
15
+ "model.language_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.language_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.language_model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
18
+ "model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.language_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.language_model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.language_model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.language_model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.language_model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.language_model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.language_model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
26
+ "model.language_model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.language_model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.language_model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
29
+ "model.language_model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.language_model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.language_model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
32
+ "model.language_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.language_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.language_model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.language_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.language_model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
37
+ "model.language_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.language_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.language_model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
40
+ "model.language_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.language_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.language_model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
43
+ "model.language_model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.language_model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.language_model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.language_model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "model.language_model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
48
+ "model.language_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.language_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.language_model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
51
+ "model.language_model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.language_model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.language_model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.language_model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.language_model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.language_model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.language_model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.language_model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
59
+ "model.language_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.language_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.language_model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
62
+ "model.language_model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.language_model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.language_model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.language_model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.language_model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.language_model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.language_model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.language_model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
70
+ "model.language_model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.language_model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.language_model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
73
+ "model.language_model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.language_model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.language_model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.language_model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.language_model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.language_model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.language_model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
80
+ "model.language_model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
81
+ "model.language_model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.language_model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.language_model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
84
+ "model.language_model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.language_model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.language_model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.language_model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.language_model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.language_model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.language_model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.language_model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
92
+ "model.language_model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.language_model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.language_model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
95
+ "model.language_model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.language_model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.language_model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.language_model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.language_model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.language_model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.language_model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
102
+ "model.language_model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
103
+ "model.language_model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.language_model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.language_model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
106
+ "model.language_model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.language_model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.language_model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.language_model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.language_model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.language_model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.language_model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.language_model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
114
+ "model.language_model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.language_model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.language_model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
117
+ "model.language_model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.language_model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.language_model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
120
+ "model.language_model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.language_model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.language_model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.language_model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
124
+ "model.language_model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
125
+ "model.language_model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.language_model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.language_model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
128
+ "model.language_model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.language_model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.language_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "model.language_model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.language_model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.language_model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.language_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.language_model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
136
+ "model.language_model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.language_model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.language_model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
139
+ "model.language_model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.language_model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.language_model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
142
+ "model.language_model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.language_model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.language_model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
145
+ "model.language_model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
146
+ "model.language_model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
147
+ "model.language_model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.language_model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.language_model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
150
+ "model.language_model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.language_model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
152
+ "model.language_model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.language_model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.language_model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.language_model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.language_model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.language_model.layers.20.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
158
+ "model.language_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.language_model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.language_model.layers.20.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
161
+ "model.language_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.language_model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.language_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
164
+ "model.language_model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.language_model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.language_model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.language_model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
168
+ "model.language_model.layers.21.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
169
+ "model.language_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.language_model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.language_model.layers.21.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
172
+ "model.language_model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.language_model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.language_model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.language_model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.language_model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.language_model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.language_model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
179
+ "model.language_model.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
180
+ "model.language_model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.language_model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.language_model.layers.22.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
183
+ "model.language_model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.language_model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.language_model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
186
+ "model.language_model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.language_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.language_model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.language_model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.language_model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
191
+ "model.language_model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.language_model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.language_model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
194
+ "model.language_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.language_model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.language_model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
197
+ "model.language_model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.language_model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.language_model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.language_model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.language_model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
202
+ "model.language_model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.language_model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.language_model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
205
+ "model.language_model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.language_model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.language_model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.language_model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.language_model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.language_model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.language_model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.language_model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
213
+ "model.language_model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.language_model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.language_model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
216
+ "model.language_model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.language_model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
218
+ "model.language_model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
219
+ "model.language_model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.language_model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.language_model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.language_model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
223
+ "model.language_model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
224
+ "model.language_model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.language_model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.language_model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
227
+ "model.language_model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.language_model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.language_model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.language_model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.language_model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.language_model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.language_model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.language_model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
235
+ "model.language_model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.language_model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.language_model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
238
+ "model.language_model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.language_model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.language_model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.language_model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.language_model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.language_model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.language_model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
245
+ "model.language_model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
246
+ "model.language_model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.language_model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.language_model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
249
+ "model.language_model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.language_model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.language_model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.language_model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.language_model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.language_model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.language_model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.language_model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
257
+ "model.language_model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.language_model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.language_model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
260
+ "model.language_model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.language_model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.language_model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
263
+ "model.language_model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.language_model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.language_model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.language_model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
267
+ "model.language_model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
268
+ "model.language_model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.language_model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.language_model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
271
+ "model.language_model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.language_model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.language_model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.language_model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.language_model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.language_model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.language_model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
278
+ "model.language_model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
279
+ "model.language_model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.language_model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.language_model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
282
+ "model.language_model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.language_model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.language_model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
285
+ "model.language_model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.language_model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.language_model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.language_model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
289
+ "model.language_model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
290
+ "model.language_model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.language_model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.language_model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
293
+ "model.language_model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.language_model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.language_model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
296
+ "model.language_model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
297
+ "model.language_model.layers.32.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
298
+ "model.language_model.layers.32.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
299
+ "model.language_model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
300
+ "model.language_model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
301
+ "model.language_model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.language_model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.language_model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
304
+ "model.language_model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.language_model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.language_model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
307
+ "model.language_model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
308
+ "model.language_model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
309
+ "model.language_model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
310
+ "model.language_model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
311
+ "model.language_model.layers.33.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
312
+ "model.language_model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
313
+ "model.language_model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
314
+ "model.language_model.layers.33.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
315
+ "model.language_model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
316
+ "model.language_model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
317
+ "model.language_model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
318
+ "model.language_model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
319
+ "model.language_model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
320
+ "model.language_model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
321
+ "model.language_model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
322
+ "model.language_model.layers.34.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
323
+ "model.language_model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
324
+ "model.language_model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
325
+ "model.language_model.layers.34.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
326
+ "model.language_model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
327
+ "model.language_model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
328
+ "model.language_model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
329
+ "model.language_model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.language_model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.language_model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
332
+ "model.language_model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
333
+ "model.language_model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
334
+ "model.language_model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.language_model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
336
+ "model.language_model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
337
+ "model.language_model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
338
+ "model.language_model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
339
+ "model.language_model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
340
+ "model.language_model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.language_model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.language_model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.language_model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
344
+ "model.language_model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
345
+ "model.language_model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.language_model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.language_model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
348
+ "model.language_model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.language_model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
350
+ "model.language_model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
351
+ "model.language_model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.language_model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.language_model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
354
+ "model.language_model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
355
+ "model.language_model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
356
+ "model.language_model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.language_model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
358
+ "model.language_model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
359
+ "model.language_model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.language_model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
361
+ "model.language_model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
362
+ "model.language_model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
363
+ "model.language_model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.language_model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.language_model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
366
+ "model.language_model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
367
+ "model.language_model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.language_model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.language_model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
370
+ "model.language_model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.language_model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.language_model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
373
+ "model.language_model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
374
+ "model.language_model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
375
+ "model.language_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
376
+ "model.language_model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
377
+ "model.language_model.layers.7.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
378
+ "model.language_model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
379
+ "model.language_model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
380
+ "model.language_model.layers.7.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
381
+ "model.language_model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
382
+ "model.language_model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
383
+ "model.language_model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
384
+ "model.language_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
385
+ "model.language_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
386
+ "model.language_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
387
+ "model.language_model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
388
+ "model.language_model.layers.8.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
389
+ "model.language_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.language_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
391
+ "model.language_model.layers.8.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
392
+ "model.language_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
393
+ "model.language_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
394
+ "model.language_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
395
+ "model.language_model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
396
+ "model.language_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.language_model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
398
+ "model.language_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
399
+ "model.language_model.layers.9.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
400
+ "model.language_model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
401
+ "model.language_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
402
+ "model.language_model.layers.9.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
403
+ "model.language_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
404
+ "model.language_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
405
+ "model.language_model.norm.weight": "model-00004-of-00004.safetensors",
406
+ "model.visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
407
+ "model.visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
409
+ "model.visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
410
+ "model.visual.blocks.0.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
411
+ "model.visual.blocks.0.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
412
+ "model.visual.blocks.0.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
413
+ "model.visual.blocks.0.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
414
+ "model.visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
415
+ "model.visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
416
+ "model.visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
417
+ "model.visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
418
+ "model.visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
419
+ "model.visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
420
+ "model.visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
421
+ "model.visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
422
+ "model.visual.blocks.1.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
423
+ "model.visual.blocks.1.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
424
+ "model.visual.blocks.1.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
425
+ "model.visual.blocks.1.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
426
+ "model.visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
427
+ "model.visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
428
+ "model.visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
429
+ "model.visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
430
+ "model.visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
431
+ "model.visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
432
+ "model.visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
433
+ "model.visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
434
+ "model.visual.blocks.10.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
435
+ "model.visual.blocks.10.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
436
+ "model.visual.blocks.10.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
437
+ "model.visual.blocks.10.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
438
+ "model.visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
439
+ "model.visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
440
+ "model.visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
441
+ "model.visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
442
+ "model.visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
443
+ "model.visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
444
+ "model.visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
445
+ "model.visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
446
+ "model.visual.blocks.11.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
447
+ "model.visual.blocks.11.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
448
+ "model.visual.blocks.11.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
449
+ "model.visual.blocks.11.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
450
+ "model.visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
451
+ "model.visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
452
+ "model.visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
453
+ "model.visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
454
+ "model.visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
455
+ "model.visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
456
+ "model.visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
457
+ "model.visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
458
+ "model.visual.blocks.12.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
459
+ "model.visual.blocks.12.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
460
+ "model.visual.blocks.12.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
461
+ "model.visual.blocks.12.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
462
+ "model.visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
463
+ "model.visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
464
+ "model.visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
465
+ "model.visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
466
+ "model.visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
467
+ "model.visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
468
+ "model.visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
469
+ "model.visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
470
+ "model.visual.blocks.13.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
471
+ "model.visual.blocks.13.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
472
+ "model.visual.blocks.13.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
473
+ "model.visual.blocks.13.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
474
+ "model.visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
475
+ "model.visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
476
+ "model.visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
477
+ "model.visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
478
+ "model.visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
479
+ "model.visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
480
+ "model.visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
481
+ "model.visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
482
+ "model.visual.blocks.14.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
483
+ "model.visual.blocks.14.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
484
+ "model.visual.blocks.14.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
485
+ "model.visual.blocks.14.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
486
+ "model.visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
487
+ "model.visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
488
+ "model.visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
489
+ "model.visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
490
+ "model.visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
491
+ "model.visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
492
+ "model.visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
493
+ "model.visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
494
+ "model.visual.blocks.15.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
495
+ "model.visual.blocks.15.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
496
+ "model.visual.blocks.15.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
497
+ "model.visual.blocks.15.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
498
+ "model.visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
499
+ "model.visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
500
+ "model.visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
501
+ "model.visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
502
+ "model.visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
503
+ "model.visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
504
+ "model.visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
505
+ "model.visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
506
+ "model.visual.blocks.16.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
507
+ "model.visual.blocks.16.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
508
+ "model.visual.blocks.16.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
509
+ "model.visual.blocks.16.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
510
+ "model.visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
511
+ "model.visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
512
+ "model.visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
513
+ "model.visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
514
+ "model.visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
515
+ "model.visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
516
+ "model.visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
517
+ "model.visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
518
+ "model.visual.blocks.17.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
519
+ "model.visual.blocks.17.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
520
+ "model.visual.blocks.17.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
521
+ "model.visual.blocks.17.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
522
+ "model.visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
523
+ "model.visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
524
+ "model.visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
525
+ "model.visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
526
+ "model.visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
527
+ "model.visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
528
+ "model.visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
529
+ "model.visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
530
+ "model.visual.blocks.18.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
531
+ "model.visual.blocks.18.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
532
+ "model.visual.blocks.18.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
533
+ "model.visual.blocks.18.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
534
+ "model.visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
535
+ "model.visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
536
+ "model.visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
537
+ "model.visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
538
+ "model.visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
539
+ "model.visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
540
+ "model.visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
541
+ "model.visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
542
+ "model.visual.blocks.19.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
543
+ "model.visual.blocks.19.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
544
+ "model.visual.blocks.19.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
545
+ "model.visual.blocks.19.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
546
+ "model.visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
547
+ "model.visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
548
+ "model.visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
549
+ "model.visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
550
+ "model.visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
551
+ "model.visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
552
+ "model.visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
553
+ "model.visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
554
+ "model.visual.blocks.2.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
555
+ "model.visual.blocks.2.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
556
+ "model.visual.blocks.2.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
557
+ "model.visual.blocks.2.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
558
+ "model.visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
559
+ "model.visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
560
+ "model.visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
561
+ "model.visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
562
+ "model.visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
563
+ "model.visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
564
+ "model.visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
565
+ "model.visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
566
+ "model.visual.blocks.20.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
567
+ "model.visual.blocks.20.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
568
+ "model.visual.blocks.20.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
569
+ "model.visual.blocks.20.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
570
+ "model.visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
571
+ "model.visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
572
+ "model.visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
573
+ "model.visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
574
+ "model.visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
575
+ "model.visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
576
+ "model.visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
577
+ "model.visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
578
+ "model.visual.blocks.21.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
579
+ "model.visual.blocks.21.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
580
+ "model.visual.blocks.21.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
581
+ "model.visual.blocks.21.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
582
+ "model.visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
583
+ "model.visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
584
+ "model.visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
585
+ "model.visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
586
+ "model.visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
587
+ "model.visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
588
+ "model.visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
589
+ "model.visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
590
+ "model.visual.blocks.22.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
591
+ "model.visual.blocks.22.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
592
+ "model.visual.blocks.22.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
593
+ "model.visual.blocks.22.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
594
+ "model.visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
595
+ "model.visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
596
+ "model.visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
597
+ "model.visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
598
+ "model.visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
599
+ "model.visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
600
+ "model.visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
601
+ "model.visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
602
+ "model.visual.blocks.23.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
603
+ "model.visual.blocks.23.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
604
+ "model.visual.blocks.23.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
605
+ "model.visual.blocks.23.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
606
+ "model.visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
607
+ "model.visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
608
+ "model.visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
609
+ "model.visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
610
+ "model.visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
611
+ "model.visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
612
+ "model.visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
613
+ "model.visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
614
+ "model.visual.blocks.24.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
615
+ "model.visual.blocks.24.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
616
+ "model.visual.blocks.24.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
617
+ "model.visual.blocks.24.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
618
+ "model.visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
619
+ "model.visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
620
+ "model.visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
621
+ "model.visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
622
+ "model.visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
623
+ "model.visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
624
+ "model.visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
625
+ "model.visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
626
+ "model.visual.blocks.25.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
627
+ "model.visual.blocks.25.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
628
+ "model.visual.blocks.25.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
629
+ "model.visual.blocks.25.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
630
+ "model.visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
631
+ "model.visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
632
+ "model.visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
633
+ "model.visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
634
+ "model.visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
635
+ "model.visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
636
+ "model.visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
637
+ "model.visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
638
+ "model.visual.blocks.26.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
639
+ "model.visual.blocks.26.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
640
+ "model.visual.blocks.26.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
641
+ "model.visual.blocks.26.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
642
+ "model.visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
643
+ "model.visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
644
+ "model.visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
645
+ "model.visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
646
+ "model.visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
647
+ "model.visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
648
+ "model.visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
649
+ "model.visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
650
+ "model.visual.blocks.3.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
651
+ "model.visual.blocks.3.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
652
+ "model.visual.blocks.3.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
653
+ "model.visual.blocks.3.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
654
+ "model.visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
655
+ "model.visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
656
+ "model.visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
657
+ "model.visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
658
+ "model.visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
659
+ "model.visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
660
+ "model.visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
661
+ "model.visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
662
+ "model.visual.blocks.4.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
663
+ "model.visual.blocks.4.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
664
+ "model.visual.blocks.4.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
665
+ "model.visual.blocks.4.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
666
+ "model.visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
667
+ "model.visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
668
+ "model.visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
669
+ "model.visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
670
+ "model.visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
671
+ "model.visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
672
+ "model.visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
673
+ "model.visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
674
+ "model.visual.blocks.5.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
675
+ "model.visual.blocks.5.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
676
+ "model.visual.blocks.5.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
677
+ "model.visual.blocks.5.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
678
+ "model.visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
679
+ "model.visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
680
+ "model.visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
681
+ "model.visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
682
+ "model.visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
683
+ "model.visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
684
+ "model.visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
685
+ "model.visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
686
+ "model.visual.blocks.6.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
687
+ "model.visual.blocks.6.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
688
+ "model.visual.blocks.6.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
689
+ "model.visual.blocks.6.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
690
+ "model.visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
691
+ "model.visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
692
+ "model.visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
693
+ "model.visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
694
+ "model.visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
695
+ "model.visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
696
+ "model.visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
697
+ "model.visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
698
+ "model.visual.blocks.7.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
699
+ "model.visual.blocks.7.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
700
+ "model.visual.blocks.7.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
701
+ "model.visual.blocks.7.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
702
+ "model.visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
703
+ "model.visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
704
+ "model.visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
705
+ "model.visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
706
+ "model.visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
707
+ "model.visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
708
+ "model.visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
709
+ "model.visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
710
+ "model.visual.blocks.8.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
711
+ "model.visual.blocks.8.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
712
+ "model.visual.blocks.8.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
713
+ "model.visual.blocks.8.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
714
+ "model.visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
715
+ "model.visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
716
+ "model.visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
717
+ "model.visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
718
+ "model.visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
719
+ "model.visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
720
+ "model.visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
721
+ "model.visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
722
+ "model.visual.blocks.9.mlp.linear_fc1.bias": "model-00001-of-00004.safetensors",
723
+ "model.visual.blocks.9.mlp.linear_fc1.weight": "model-00001-of-00004.safetensors",
724
+ "model.visual.blocks.9.mlp.linear_fc2.bias": "model-00001-of-00004.safetensors",
725
+ "model.visual.blocks.9.mlp.linear_fc2.weight": "model-00001-of-00004.safetensors",
726
+ "model.visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
727
+ "model.visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
728
+ "model.visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
729
+ "model.visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
730
+ "model.visual.deepstack_merger_list.0.linear_fc1.bias": "model-00001-of-00004.safetensors",
731
+ "model.visual.deepstack_merger_list.0.linear_fc1.weight": "model-00001-of-00004.safetensors",
732
+ "model.visual.deepstack_merger_list.0.linear_fc2.bias": "model-00001-of-00004.safetensors",
733
+ "model.visual.deepstack_merger_list.0.linear_fc2.weight": "model-00001-of-00004.safetensors",
734
+ "model.visual.deepstack_merger_list.0.norm.bias": "model-00001-of-00004.safetensors",
735
+ "model.visual.deepstack_merger_list.0.norm.weight": "model-00001-of-00004.safetensors",
736
+ "model.visual.deepstack_merger_list.1.linear_fc1.bias": "model-00001-of-00004.safetensors",
737
+ "model.visual.deepstack_merger_list.1.linear_fc1.weight": "model-00001-of-00004.safetensors",
738
+ "model.visual.deepstack_merger_list.1.linear_fc2.bias": "model-00001-of-00004.safetensors",
739
+ "model.visual.deepstack_merger_list.1.linear_fc2.weight": "model-00001-of-00004.safetensors",
740
+ "model.visual.deepstack_merger_list.1.norm.bias": "model-00001-of-00004.safetensors",
741
+ "model.visual.deepstack_merger_list.1.norm.weight": "model-00001-of-00004.safetensors",
742
+ "model.visual.deepstack_merger_list.2.linear_fc1.bias": "model-00001-of-00004.safetensors",
743
+ "model.visual.deepstack_merger_list.2.linear_fc1.weight": "model-00001-of-00004.safetensors",
744
+ "model.visual.deepstack_merger_list.2.linear_fc2.bias": "model-00001-of-00004.safetensors",
745
+ "model.visual.deepstack_merger_list.2.linear_fc2.weight": "model-00001-of-00004.safetensors",
746
+ "model.visual.deepstack_merger_list.2.norm.bias": "model-00001-of-00004.safetensors",
747
+ "model.visual.deepstack_merger_list.2.norm.weight": "model-00001-of-00004.safetensors",
748
+ "model.visual.merger.linear_fc1.bias": "model-00001-of-00004.safetensors",
749
+ "model.visual.merger.linear_fc1.weight": "model-00001-of-00004.safetensors",
750
+ "model.visual.merger.linear_fc2.bias": "model-00001-of-00004.safetensors",
751
+ "model.visual.merger.linear_fc2.weight": "model-00001-of-00004.safetensors",
752
+ "model.visual.merger.norm.bias": "model-00001-of-00004.safetensors",
753
+ "model.visual.merger.norm.weight": "model-00001-of-00004.safetensors",
754
+ "model.visual.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
755
+ "model.visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
756
+ "model.visual.pos_embed.weight": "model-00001-of-00004.safetensors"
757
+ }
758
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/preprocessor_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "size": {
3
+ "longest_edge": 16777216,
4
+ "shortest_edge": 65536
5
+ },
6
+ "patch_size": 16,
7
+ "temporal_patch_size": 2,
8
+ "merge_size": 2,
9
+ "image_mean": [
10
+ 0.5,
11
+ 0.5,
12
+ 0.5
13
+ ],
14
+ "image_std": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "processor_class": "Qwen3VLProcessor",
20
+ "image_processor_type": "Qwen2VLImageProcessorFast"
21
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 262144,
235
+ "pad_token": "<|endoftext|>",
236
+ "processor_class": "Qwen3VLProcessor",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/trainer_state.json ADDED
@@ -0,0 +1,2253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 100.0,
7
+ "global_step": 1583,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0006317119393556538,
14
+ "grad_norm": 122.21772766113281,
15
+ "learning_rate": 1.2500000000000002e-07,
16
+ "loss": 2.3779873847961426,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.003158559696778269,
21
+ "grad_norm": 122.82272338867188,
22
+ "learning_rate": 6.25e-07,
23
+ "loss": 2.4099979400634766,
24
+ "step": 5
25
+ },
26
+ {
27
+ "epoch": 0.006317119393556538,
28
+ "grad_norm": 98.69967651367188,
29
+ "learning_rate": 1.25e-06,
30
+ "loss": 2.0238502502441404,
31
+ "step": 10
32
+ },
33
+ {
34
+ "epoch": 0.009475679090334808,
35
+ "grad_norm": 12.744471549987793,
36
+ "learning_rate": 1.8750000000000003e-06,
37
+ "loss": 1.0879770278930665,
38
+ "step": 15
39
+ },
40
+ {
41
+ "epoch": 0.012634238787113077,
42
+ "grad_norm": 11.619422912597656,
43
+ "learning_rate": 2.5e-06,
44
+ "loss": 0.7869198799133301,
45
+ "step": 20
46
+ },
47
+ {
48
+ "epoch": 0.015792798483891344,
49
+ "grad_norm": 5.845494747161865,
50
+ "learning_rate": 3.125e-06,
51
+ "loss": 0.7529010772705078,
52
+ "step": 25
53
+ },
54
+ {
55
+ "epoch": 0.018951358180669616,
56
+ "grad_norm": 12.95534610748291,
57
+ "learning_rate": 3.7500000000000005e-06,
58
+ "loss": 0.6795804023742675,
59
+ "step": 30
60
+ },
61
+ {
62
+ "epoch": 0.022109917877447885,
63
+ "grad_norm": 13.880292892456055,
64
+ "learning_rate": 4.3750000000000005e-06,
65
+ "loss": 0.6953176975250244,
66
+ "step": 35
67
+ },
68
+ {
69
+ "epoch": 0.025268477574226154,
70
+ "grad_norm": 8.269796371459961,
71
+ "learning_rate": 5e-06,
72
+ "loss": 0.6450273513793945,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.028427037271004423,
77
+ "grad_norm": 12.575061798095703,
78
+ "learning_rate": 5.625e-06,
79
+ "loss": 0.6498686790466308,
80
+ "step": 45
81
+ },
82
+ {
83
+ "epoch": 0.03158559696778269,
84
+ "grad_norm": 10.573735237121582,
85
+ "learning_rate": 6.25e-06,
86
+ "loss": 0.6426327228546143,
87
+ "step": 50
88
+ },
89
+ {
90
+ "epoch": 0.03474415666456096,
91
+ "grad_norm": 13.236833572387695,
92
+ "learning_rate": 6.875e-06,
93
+ "loss": 0.6204054832458497,
94
+ "step": 55
95
+ },
96
+ {
97
+ "epoch": 0.03790271636133923,
98
+ "grad_norm": 7.413199424743652,
99
+ "learning_rate": 7.500000000000001e-06,
100
+ "loss": 0.6516162872314453,
101
+ "step": 60
102
+ },
103
+ {
104
+ "epoch": 0.0410612760581175,
105
+ "grad_norm": 8.221543312072754,
106
+ "learning_rate": 8.125000000000001e-06,
107
+ "loss": 0.5761067867279053,
108
+ "step": 65
109
+ },
110
+ {
111
+ "epoch": 0.04421983575489577,
112
+ "grad_norm": 15.232970237731934,
113
+ "learning_rate": 8.750000000000001e-06,
114
+ "loss": 0.6028432369232177,
115
+ "step": 70
116
+ },
117
+ {
118
+ "epoch": 0.047378395451674035,
119
+ "grad_norm": 6.311901569366455,
120
+ "learning_rate": 9.375000000000001e-06,
121
+ "loss": 0.6278115749359131,
122
+ "step": 75
123
+ },
124
+ {
125
+ "epoch": 0.05053695514845231,
126
+ "grad_norm": 8.331799507141113,
127
+ "learning_rate": 1e-05,
128
+ "loss": 0.6412579536437988,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.05369551484523057,
133
+ "grad_norm": 11.855903625488281,
134
+ "learning_rate": 9.999726940149212e-06,
135
+ "loss": 0.6060226440429688,
136
+ "step": 85
137
+ },
138
+ {
139
+ "epoch": 0.056854074542008845,
140
+ "grad_norm": 7.768092155456543,
141
+ "learning_rate": 9.998907790421521e-06,
142
+ "loss": 0.6053397178649902,
143
+ "step": 90
144
+ },
145
+ {
146
+ "epoch": 0.06001263423878711,
147
+ "grad_norm": 8.807403564453125,
148
+ "learning_rate": 9.997542640287686e-06,
149
+ "loss": 0.633329200744629,
150
+ "step": 95
151
+ },
152
+ {
153
+ "epoch": 0.06317119393556538,
154
+ "grad_norm": 7.209197044372559,
155
+ "learning_rate": 9.995631638854786e-06,
156
+ "loss": 0.6593124389648437,
157
+ "step": 100
158
+ },
159
+ {
160
+ "epoch": 0.06632975363234365,
161
+ "grad_norm": 7.338163375854492,
162
+ "learning_rate": 9.993174994849926e-06,
163
+ "loss": 0.6172913551330567,
164
+ "step": 105
165
+ },
166
+ {
167
+ "epoch": 0.06948831332912192,
168
+ "grad_norm": 6.169966220855713,
169
+ "learning_rate": 9.990172976597446e-06,
170
+ "loss": 0.6361753463745117,
171
+ "step": 110
172
+ },
173
+ {
174
+ "epoch": 0.07264687302590019,
175
+ "grad_norm": 22.97487449645996,
176
+ "learning_rate": 9.986625911989605e-06,
177
+ "loss": 0.6516980648040771,
178
+ "step": 115
179
+ },
180
+ {
181
+ "epoch": 0.07580543272267846,
182
+ "grad_norm": 5.056536674499512,
183
+ "learning_rate": 9.982534188450778e-06,
184
+ "loss": 0.6052715301513671,
185
+ "step": 120
186
+ },
187
+ {
188
+ "epoch": 0.07896399241945673,
189
+ "grad_norm": 7.628757953643799,
190
+ "learning_rate": 9.977898252895133e-06,
191
+ "loss": 0.6535079002380371,
192
+ "step": 125
193
+ },
194
+ {
195
+ "epoch": 0.082122552116235,
196
+ "grad_norm": 7.2279052734375,
197
+ "learning_rate": 9.97271861167782e-06,
198
+ "loss": 0.632594108581543,
199
+ "step": 130
200
+ },
201
+ {
202
+ "epoch": 0.08528111181301326,
203
+ "grad_norm": 25.197824478149414,
204
+ "learning_rate": 9.966995830539658e-06,
205
+ "loss": 0.6194408893585205,
206
+ "step": 135
207
+ },
208
+ {
209
+ "epoch": 0.08843967150979154,
210
+ "grad_norm": 7.512106895446777,
211
+ "learning_rate": 9.960730534545357e-06,
212
+ "loss": 0.5942925453186035,
213
+ "step": 140
214
+ },
215
+ {
216
+ "epoch": 0.0915982312065698,
217
+ "grad_norm": 74.88062286376953,
218
+ "learning_rate": 9.95392340801523e-06,
219
+ "loss": 0.5897977828979493,
220
+ "step": 145
221
+ },
222
+ {
223
+ "epoch": 0.09475679090334807,
224
+ "grad_norm": 5.987714767456055,
225
+ "learning_rate": 9.946575194450459e-06,
226
+ "loss": 0.630145263671875,
227
+ "step": 150
228
+ },
229
+ {
230
+ "epoch": 0.09791535060012634,
231
+ "grad_norm": 10.636955261230469,
232
+ "learning_rate": 9.938686696451884e-06,
233
+ "loss": 0.6271142959594727,
234
+ "step": 155
235
+ },
236
+ {
237
+ "epoch": 0.10107391029690461,
238
+ "grad_norm": 14.121485710144043,
239
+ "learning_rate": 9.93025877563234e-06,
240
+ "loss": 0.6020857810974121,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 0.10423246999368288,
245
+ "grad_norm": 6.21815299987793,
246
+ "learning_rate": 9.921292352522549e-06,
247
+ "loss": 0.6175527095794677,
248
+ "step": 165
249
+ },
250
+ {
251
+ "epoch": 0.10739102969046115,
252
+ "grad_norm": 10.551142692565918,
253
+ "learning_rate": 9.91178840647057e-06,
254
+ "loss": 0.6103403568267822,
255
+ "step": 170
256
+ },
257
+ {
258
+ "epoch": 0.11054958938723942,
259
+ "grad_norm": 4.529727935791016,
260
+ "learning_rate": 9.90174797553484e-06,
261
+ "loss": 0.6100959777832031,
262
+ "step": 175
263
+ },
264
+ {
265
+ "epoch": 0.11370814908401769,
266
+ "grad_norm": 4.059769630432129,
267
+ "learning_rate": 9.891172156370793e-06,
268
+ "loss": 0.5791889190673828,
269
+ "step": 180
270
+ },
271
+ {
272
+ "epoch": 0.11686670878079596,
273
+ "grad_norm": 5.1391096115112305,
274
+ "learning_rate": 9.880062104111064e-06,
275
+ "loss": 0.6300261497497559,
276
+ "step": 185
277
+ },
278
+ {
279
+ "epoch": 0.12002526847757422,
280
+ "grad_norm": 6.646051406860352,
281
+ "learning_rate": 9.868419032239342e-06,
282
+ "loss": 0.6099133968353272,
283
+ "step": 190
284
+ },
285
+ {
286
+ "epoch": 0.1231838281743525,
287
+ "grad_norm": 9.308674812316895,
288
+ "learning_rate": 9.856244212457812e-06,
289
+ "loss": 0.5914440155029297,
290
+ "step": 195
291
+ },
292
+ {
293
+ "epoch": 0.12634238787113075,
294
+ "grad_norm": 4.703726291656494,
295
+ "learning_rate": 9.843538974548264e-06,
296
+ "loss": 0.5801521301269531,
297
+ "step": 200
298
+ },
299
+ {
300
+ "epoch": 0.12950094756790903,
301
+ "grad_norm": 7.229343414306641,
302
+ "learning_rate": 9.830304706226846e-06,
303
+ "loss": 0.6188760280609131,
304
+ "step": 205
305
+ },
306
+ {
307
+ "epoch": 0.1326595072646873,
308
+ "grad_norm": 4.7972636222839355,
309
+ "learning_rate": 9.81654285299249e-06,
310
+ "loss": 0.629652452468872,
311
+ "step": 210
312
+ },
313
+ {
314
+ "epoch": 0.13581806696146556,
315
+ "grad_norm": 12.447611808776855,
316
+ "learning_rate": 9.802254917969033e-06,
317
+ "loss": 0.6087494373321534,
318
+ "step": 215
319
+ },
320
+ {
321
+ "epoch": 0.13897662665824384,
322
+ "grad_norm": 5.0666327476501465,
323
+ "learning_rate": 9.787442461741036e-06,
324
+ "loss": 0.638186264038086,
325
+ "step": 220
326
+ },
327
+ {
328
+ "epoch": 0.14213518635502212,
329
+ "grad_norm": 6.855245113372803,
330
+ "learning_rate": 9.772107102183337e-06,
331
+ "loss": 0.6072909355163574,
332
+ "step": 225
333
+ },
334
+ {
335
+ "epoch": 0.14529374605180037,
336
+ "grad_norm": 20.068870544433594,
337
+ "learning_rate": 9.75625051428433e-06,
338
+ "loss": 0.6302168369293213,
339
+ "step": 230
340
+ },
341
+ {
342
+ "epoch": 0.14845230574857865,
343
+ "grad_norm": 7.539628982543945,
344
+ "learning_rate": 9.739874429963025e-06,
345
+ "loss": 0.5632452011108399,
346
+ "step": 235
347
+ },
348
+ {
349
+ "epoch": 0.15161086544535693,
350
+ "grad_norm": 11.60382080078125,
351
+ "learning_rate": 9.722980637879879e-06,
352
+ "loss": 0.6214236259460449,
353
+ "step": 240
354
+ },
355
+ {
356
+ "epoch": 0.15476942514213518,
357
+ "grad_norm": 12.695980072021484,
358
+ "learning_rate": 9.705570983241433e-06,
359
+ "loss": 0.6070450782775879,
360
+ "step": 245
361
+ },
362
+ {
363
+ "epoch": 0.15792798483891346,
364
+ "grad_norm": 7.528429985046387,
365
+ "learning_rate": 9.687647367598762e-06,
366
+ "loss": 0.6085145950317383,
367
+ "step": 250
368
+ },
369
+ {
370
+ "epoch": 0.1610865445356917,
371
+ "grad_norm": 15.803028106689453,
372
+ "learning_rate": 9.669211748639795e-06,
373
+ "loss": 0.6352860450744628,
374
+ "step": 255
375
+ },
376
+ {
377
+ "epoch": 0.16424510423247,
378
+ "grad_norm": 6.090873718261719,
379
+ "learning_rate": 9.650266139975474e-06,
380
+ "loss": 0.5930253028869629,
381
+ "step": 260
382
+ },
383
+ {
384
+ "epoch": 0.16740366392924827,
385
+ "grad_norm": 6.760429382324219,
386
+ "learning_rate": 9.630812610919832e-06,
387
+ "loss": 0.6156267166137696,
388
+ "step": 265
389
+ },
390
+ {
391
+ "epoch": 0.17056222362602652,
392
+ "grad_norm": 7.687544345855713,
393
+ "learning_rate": 9.610853286263962e-06,
394
+ "loss": 0.5964836597442627,
395
+ "step": 270
396
+ },
397
+ {
398
+ "epoch": 0.1737207833228048,
399
+ "grad_norm": 11.865144729614258,
400
+ "learning_rate": 9.590390346043952e-06,
401
+ "loss": 0.5836747169494629,
402
+ "step": 275
403
+ },
404
+ {
405
+ "epoch": 0.17687934301958308,
406
+ "grad_norm": 4.421767711639404,
407
+ "learning_rate": 9.56942602530276e-06,
408
+ "loss": 0.6131498336791992,
409
+ "step": 280
410
+ },
411
+ {
412
+ "epoch": 0.18003790271636133,
413
+ "grad_norm": 6.420102119445801,
414
+ "learning_rate": 9.547962613846105e-06,
415
+ "loss": 0.6119760990142822,
416
+ "step": 285
417
+ },
418
+ {
419
+ "epoch": 0.1831964624131396,
420
+ "grad_norm": 5.53742790222168,
421
+ "learning_rate": 9.526002455992361e-06,
422
+ "loss": 0.5982232570648194,
423
+ "step": 290
424
+ },
425
+ {
426
+ "epoch": 0.1863550221099179,
427
+ "grad_norm": 7.056872367858887,
428
+ "learning_rate": 9.503547950316496e-06,
429
+ "loss": 0.5763063430786133,
430
+ "step": 295
431
+ },
432
+ {
433
+ "epoch": 0.18951358180669614,
434
+ "grad_norm": 8.833623886108398,
435
+ "learning_rate": 9.480601549388097e-06,
436
+ "loss": 0.6004162788391113,
437
+ "step": 300
438
+ },
439
+ {
440
+ "epoch": 0.19267214150347442,
441
+ "grad_norm": 4.1559343338012695,
442
+ "learning_rate": 9.457165759503492e-06,
443
+ "loss": 0.5793951988220215,
444
+ "step": 305
445
+ },
446
+ {
447
+ "epoch": 0.19583070120025267,
448
+ "grad_norm": 5.527397632598877,
449
+ "learning_rate": 9.433243140411997e-06,
450
+ "loss": 0.5735562324523926,
451
+ "step": 310
452
+ },
453
+ {
454
+ "epoch": 0.19898926089703095,
455
+ "grad_norm": 5.471005439758301,
456
+ "learning_rate": 9.408836305036328e-06,
457
+ "loss": 0.6176833152770996,
458
+ "step": 315
459
+ },
460
+ {
461
+ "epoch": 0.20214782059380923,
462
+ "grad_norm": 72.85253143310547,
463
+ "learning_rate": 9.383947919187219e-06,
464
+ "loss": 0.5944616794586182,
465
+ "step": 320
466
+ },
467
+ {
468
+ "epoch": 0.20530638029058748,
469
+ "grad_norm": 12.028239250183105,
470
+ "learning_rate": 9.35858070127224e-06,
471
+ "loss": 0.5844336032867432,
472
+ "step": 325
473
+ },
474
+ {
475
+ "epoch": 0.20846493998736576,
476
+ "grad_norm": 5.535583972930908,
477
+ "learning_rate": 9.332737421998884e-06,
478
+ "loss": 0.57760591506958,
479
+ "step": 330
480
+ },
481
+ {
482
+ "epoch": 0.21162349968414404,
483
+ "grad_norm": 7.867584705352783,
484
+ "learning_rate": 9.306420904071949e-06,
485
+ "loss": 0.5814825057983398,
486
+ "step": 335
487
+ },
488
+ {
489
+ "epoch": 0.2147820593809223,
490
+ "grad_norm": 5.047985553741455,
491
+ "learning_rate": 9.279634021885214e-06,
492
+ "loss": 0.592999792098999,
493
+ "step": 340
494
+ },
495
+ {
496
+ "epoch": 0.21794061907770057,
497
+ "grad_norm": 11.350292205810547,
498
+ "learning_rate": 9.252379701207498e-06,
499
+ "loss": 0.5931893348693847,
500
+ "step": 345
501
+ },
502
+ {
503
+ "epoch": 0.22109917877447885,
504
+ "grad_norm": 5.242804527282715,
505
+ "learning_rate": 9.224660918863104e-06,
506
+ "loss": 0.5877930641174316,
507
+ "step": 350
508
+ },
509
+ {
510
+ "epoch": 0.2242577384712571,
511
+ "grad_norm": 5.140987873077393,
512
+ "learning_rate": 9.196480702406653e-06,
513
+ "loss": 0.6046887397766113,
514
+ "step": 355
515
+ },
516
+ {
517
+ "epoch": 0.22741629816803538,
518
+ "grad_norm": 6.043530464172363,
519
+ "learning_rate": 9.167842129792428e-06,
520
+ "loss": 0.5631754398345947,
521
+ "step": 360
522
+ },
523
+ {
524
+ "epoch": 0.23057485786481363,
525
+ "grad_norm": 4.655035018920898,
526
+ "learning_rate": 9.138748329038175e-06,
527
+ "loss": 0.5468944549560547,
528
+ "step": 365
529
+ },
530
+ {
531
+ "epoch": 0.2337334175615919,
532
+ "grad_norm": 16.12846565246582,
533
+ "learning_rate": 9.109202477883452e-06,
534
+ "loss": 0.5494990348815918,
535
+ "step": 370
536
+ },
537
+ {
538
+ "epoch": 0.2368919772583702,
539
+ "grad_norm": 4.756542682647705,
540
+ "learning_rate": 9.079207803442542e-06,
541
+ "loss": 0.5644357204437256,
542
+ "step": 375
543
+ },
544
+ {
545
+ "epoch": 0.24005053695514844,
546
+ "grad_norm": 48.086273193359375,
547
+ "learning_rate": 9.048767581851973e-06,
548
+ "loss": 0.5965734481811523,
549
+ "step": 380
550
+ },
551
+ {
552
+ "epoch": 0.24320909665192672,
553
+ "grad_norm": 4.726542949676514,
554
+ "learning_rate": 9.017885137912694e-06,
555
+ "loss": 0.5944614410400391,
556
+ "step": 385
557
+ },
558
+ {
559
+ "epoch": 0.246367656348705,
560
+ "grad_norm": 4.789234638214111,
561
+ "learning_rate": 8.986563844726919e-06,
562
+ "loss": 0.5748598098754882,
563
+ "step": 390
564
+ },
565
+ {
566
+ "epoch": 0.24952621604548325,
567
+ "grad_norm": 3.644212484359741,
568
+ "learning_rate": 8.954807123329703e-06,
569
+ "loss": 0.5667836666107178,
570
+ "step": 395
571
+ },
572
+ {
573
+ "epoch": 0.2526847757422615,
574
+ "grad_norm": 4.957195281982422,
575
+ "learning_rate": 8.922618442315292e-06,
576
+ "loss": 0.5683588027954102,
577
+ "step": 400
578
+ },
579
+ {
580
+ "epoch": 0.2558433354390398,
581
+ "grad_norm": 3.4866013526916504,
582
+ "learning_rate": 8.890001317458256e-06,
583
+ "loss": 0.585258960723877,
584
+ "step": 405
585
+ },
586
+ {
587
+ "epoch": 0.25900189513581806,
588
+ "grad_norm": 9.953559875488281,
589
+ "learning_rate": 8.856959311329495e-06,
590
+ "loss": 0.5583559036254883,
591
+ "step": 410
592
+ },
593
+ {
594
+ "epoch": 0.2621604548325963,
595
+ "grad_norm": 6.309456825256348,
596
+ "learning_rate": 8.823496032907117e-06,
597
+ "loss": 0.5151843070983887,
598
+ "step": 415
599
+ },
600
+ {
601
+ "epoch": 0.2653190145293746,
602
+ "grad_norm": 8.121264457702637,
603
+ "learning_rate": 8.789615137182243e-06,
604
+ "loss": 0.5788380146026612,
605
+ "step": 420
606
+ },
607
+ {
608
+ "epoch": 0.26847757422615287,
609
+ "grad_norm": 5.169267177581787,
610
+ "learning_rate": 8.755320324759808e-06,
611
+ "loss": 0.5608585357666016,
612
+ "step": 425
613
+ },
614
+ {
615
+ "epoch": 0.2716361339229311,
616
+ "grad_norm": 4.542581081390381,
617
+ "learning_rate": 8.720615341454357e-06,
618
+ "loss": 0.5202017784118652,
619
+ "step": 430
620
+ },
621
+ {
622
+ "epoch": 0.27479469361970943,
623
+ "grad_norm": 4.193251609802246,
624
+ "learning_rate": 8.685503977880916e-06,
625
+ "loss": 0.5853435039520264,
626
+ "step": 435
627
+ },
628
+ {
629
+ "epoch": 0.2779532533164877,
630
+ "grad_norm": 4.475220203399658,
631
+ "learning_rate": 8.64999006904096e-06,
632
+ "loss": 0.5537496566772461,
633
+ "step": 440
634
+ },
635
+ {
636
+ "epoch": 0.28111181301326593,
637
+ "grad_norm": 4.348576068878174,
638
+ "learning_rate": 8.614077493903554e-06,
639
+ "loss": 0.5437997817993164,
640
+ "step": 445
641
+ },
642
+ {
643
+ "epoch": 0.28427037271004424,
644
+ "grad_norm": 6.210071563720703,
645
+ "learning_rate": 8.57777017498166e-06,
646
+ "loss": 0.5629912853240967,
647
+ "step": 450
648
+ },
649
+ {
650
+ "epoch": 0.2874289324068225,
651
+ "grad_norm": 7.034096717834473,
652
+ "learning_rate": 8.54107207790371e-06,
653
+ "loss": 0.589349365234375,
654
+ "step": 455
655
+ },
656
+ {
657
+ "epoch": 0.29058749210360074,
658
+ "grad_norm": 146.75270080566406,
659
+ "learning_rate": 8.50398721098047e-06,
660
+ "loss": 0.5695879936218262,
661
+ "step": 460
662
+ },
663
+ {
664
+ "epoch": 0.29374605180037905,
665
+ "grad_norm": 13.639331817626953,
666
+ "learning_rate": 8.466519624767234e-06,
667
+ "loss": 0.5726442337036133,
668
+ "step": 465
669
+ },
670
+ {
671
+ "epoch": 0.2969046114971573,
672
+ "grad_norm": 12.202945709228516,
673
+ "learning_rate": 8.4286734116214e-06,
674
+ "loss": 0.5485877990722656,
675
+ "step": 470
676
+ },
677
+ {
678
+ "epoch": 0.30006317119393555,
679
+ "grad_norm": 5.52948522567749,
680
+ "learning_rate": 8.390452705255496e-06,
681
+ "loss": 0.5645666599273682,
682
+ "step": 475
683
+ },
684
+ {
685
+ "epoch": 0.30322173089071386,
686
+ "grad_norm": 8.134615898132324,
687
+ "learning_rate": 8.351861680285669e-06,
688
+ "loss": 0.5642531394958497,
689
+ "step": 480
690
+ },
691
+ {
692
+ "epoch": 0.3063802905874921,
693
+ "grad_norm": 9.802629470825195,
694
+ "learning_rate": 8.312904551775731e-06,
695
+ "loss": 0.5056857109069824,
696
+ "step": 485
697
+ },
698
+ {
699
+ "epoch": 0.30953885028427036,
700
+ "grad_norm": 6.090673446655273,
701
+ "learning_rate": 8.273585574776758e-06,
702
+ "loss": 0.5363763809204102,
703
+ "step": 490
704
+ },
705
+ {
706
+ "epoch": 0.31269740998104867,
707
+ "grad_norm": 4.462048053741455,
708
+ "learning_rate": 8.23390904386235e-06,
709
+ "loss": 0.5593204975128174,
710
+ "step": 495
711
+ },
712
+ {
713
+ "epoch": 0.3158559696778269,
714
+ "grad_norm": 4.13131856918335,
715
+ "learning_rate": 8.19387929265955e-06,
716
+ "loss": 0.571748161315918,
717
+ "step": 500
718
+ },
719
+ {
720
+ "epoch": 0.31901452937460517,
721
+ "grad_norm": 4.244219779968262,
722
+ "learning_rate": 8.153500693375515e-06,
723
+ "loss": 0.5027281761169433,
724
+ "step": 505
725
+ },
726
+ {
727
+ "epoch": 0.3221730890713834,
728
+ "grad_norm": 5.223016738891602,
729
+ "learning_rate": 8.11277765631996e-06,
730
+ "loss": 0.508808708190918,
731
+ "step": 510
732
+ },
733
+ {
734
+ "epoch": 0.32533164876816173,
735
+ "grad_norm": 6.880843639373779,
736
+ "learning_rate": 8.071714629423459e-06,
737
+ "loss": 0.5736294746398926,
738
+ "step": 515
739
+ },
740
+ {
741
+ "epoch": 0.32849020846494,
742
+ "grad_norm": 16.86408042907715,
743
+ "learning_rate": 8.030316097751606e-06,
744
+ "loss": 0.5303256988525391,
745
+ "step": 520
746
+ },
747
+ {
748
+ "epoch": 0.33164876816171823,
749
+ "grad_norm": 6.67186975479126,
750
+ "learning_rate": 7.988586583015156e-06,
751
+ "loss": 0.5596466064453125,
752
+ "step": 525
753
+ },
754
+ {
755
+ "epoch": 0.33480732785849654,
756
+ "grad_norm": 6.987220287322998,
757
+ "learning_rate": 7.946530643076138e-06,
758
+ "loss": 0.5276803016662598,
759
+ "step": 530
760
+ },
761
+ {
762
+ "epoch": 0.3379658875552748,
763
+ "grad_norm": 6.260607719421387,
764
+ "learning_rate": 7.904152871450022e-06,
765
+ "loss": 0.5233640670776367,
766
+ "step": 535
767
+ },
768
+ {
769
+ "epoch": 0.34112444725205304,
770
+ "grad_norm": 5.173045635223389,
771
+ "learning_rate": 7.861457896804009e-06,
772
+ "loss": 0.5339380264282226,
773
+ "step": 540
774
+ },
775
+ {
776
+ "epoch": 0.34428300694883135,
777
+ "grad_norm": 6.266994953155518,
778
+ "learning_rate": 7.818450382451457e-06,
779
+ "loss": 0.5412825584411621,
780
+ "step": 545
781
+ },
782
+ {
783
+ "epoch": 0.3474415666456096,
784
+ "grad_norm": 7.116772651672363,
785
+ "learning_rate": 7.775135025842555e-06,
786
+ "loss": 0.49798130989074707,
787
+ "step": 550
788
+ },
789
+ {
790
+ "epoch": 0.35060012634238785,
791
+ "grad_norm": 5.620773792266846,
792
+ "learning_rate": 7.73151655805122e-06,
793
+ "loss": 0.5164588928222656,
794
+ "step": 555
795
+ },
796
+ {
797
+ "epoch": 0.35375868603916616,
798
+ "grad_norm": 15.440841674804688,
799
+ "learning_rate": 7.68759974325838e-06,
800
+ "loss": 0.5284623622894287,
801
+ "step": 560
802
+ },
803
+ {
804
+ "epoch": 0.3569172457359444,
805
+ "grad_norm": 4.065725326538086,
806
+ "learning_rate": 7.643389378231592e-06,
807
+ "loss": 0.4877474308013916,
808
+ "step": 565
809
+ },
810
+ {
811
+ "epoch": 0.36007580543272266,
812
+ "grad_norm": 4.867621898651123,
813
+ "learning_rate": 7.5988902918011244e-06,
814
+ "loss": 0.5344974040985108,
815
+ "step": 570
816
+ },
817
+ {
818
+ "epoch": 0.36323436512950097,
819
+ "grad_norm": 4.9913105964660645,
820
+ "learning_rate": 7.55410734433254e-06,
821
+ "loss": 0.5376052856445312,
822
+ "step": 575
823
+ },
824
+ {
825
+ "epoch": 0.3663929248262792,
826
+ "grad_norm": 4.39754056930542,
827
+ "learning_rate": 7.509045427195819e-06,
828
+ "loss": 0.5649181365966797,
829
+ "step": 580
830
+ },
831
+ {
832
+ "epoch": 0.36955148452305747,
833
+ "grad_norm": 5.429567337036133,
834
+ "learning_rate": 7.46370946223111e-06,
835
+ "loss": 0.5195765495300293,
836
+ "step": 585
837
+ },
838
+ {
839
+ "epoch": 0.3727100442198358,
840
+ "grad_norm": 5.661245822906494,
841
+ "learning_rate": 7.418104401211144e-06,
842
+ "loss": 0.5207418918609619,
843
+ "step": 590
844
+ },
845
+ {
846
+ "epoch": 0.37586860391661403,
847
+ "grad_norm": 7.230367660522461,
848
+ "learning_rate": 7.372235225300383e-06,
849
+ "loss": 0.5240283966064453,
850
+ "step": 595
851
+ },
852
+ {
853
+ "epoch": 0.3790271636133923,
854
+ "grad_norm": 5.370527267456055,
855
+ "learning_rate": 7.32610694451096e-06,
856
+ "loss": 0.5213502407073974,
857
+ "step": 600
858
+ },
859
+ {
860
+ "epoch": 0.3821857233101706,
861
+ "grad_norm": 3.629930019378662,
862
+ "learning_rate": 7.279724597155463e-06,
863
+ "loss": 0.4902176380157471,
864
+ "step": 605
865
+ },
866
+ {
867
+ "epoch": 0.38534428300694884,
868
+ "grad_norm": 5.358458995819092,
869
+ "learning_rate": 7.2330932492966324e-06,
870
+ "loss": 0.5109825134277344,
871
+ "step": 610
872
+ },
873
+ {
874
+ "epoch": 0.3885028427037271,
875
+ "grad_norm": 4.9451727867126465,
876
+ "learning_rate": 7.18621799419402e-06,
877
+ "loss": 0.5045202255249024,
878
+ "step": 615
879
+ },
880
+ {
881
+ "epoch": 0.39166140240050534,
882
+ "grad_norm": 4.972256183624268,
883
+ "learning_rate": 7.139103951747694e-06,
884
+ "loss": 0.5265020847320556,
885
+ "step": 620
886
+ },
887
+ {
888
+ "epoch": 0.39481996209728365,
889
+ "grad_norm": 8.903159141540527,
890
+ "learning_rate": 7.091756267939016e-06,
891
+ "loss": 0.4899348258972168,
892
+ "step": 625
893
+ },
894
+ {
895
+ "epoch": 0.3979785217940619,
896
+ "grad_norm": 4.86320161819458,
897
+ "learning_rate": 7.044180114268572e-06,
898
+ "loss": 0.4950756072998047,
899
+ "step": 630
900
+ },
901
+ {
902
+ "epoch": 0.40113708149084015,
903
+ "grad_norm": 3.683849334716797,
904
+ "learning_rate": 6.996380687191335e-06,
905
+ "loss": 0.5245664119720459,
906
+ "step": 635
907
+ },
908
+ {
909
+ "epoch": 0.40429564118761846,
910
+ "grad_norm": 4.928914546966553,
911
+ "learning_rate": 6.948363207549073e-06,
912
+ "loss": 0.49074506759643555,
913
+ "step": 640
914
+ },
915
+ {
916
+ "epoch": 0.4074542008843967,
917
+ "grad_norm": 3.9439215660095215,
918
+ "learning_rate": 6.900132920000118e-06,
919
+ "loss": 0.5113429069519043,
920
+ "step": 645
921
+ },
922
+ {
923
+ "epoch": 0.41061276058117496,
924
+ "grad_norm": 6.95475959777832,
925
+ "learning_rate": 6.851695092446517e-06,
926
+ "loss": 0.5293889045715332,
927
+ "step": 650
928
+ },
929
+ {
930
+ "epoch": 0.41377132027795327,
931
+ "grad_norm": 5.405844211578369,
932
+ "learning_rate": 6.803055015458656e-06,
933
+ "loss": 0.5129672050476074,
934
+ "step": 655
935
+ },
936
+ {
937
+ "epoch": 0.4169298799747315,
938
+ "grad_norm": 4.70507287979126,
939
+ "learning_rate": 6.754218001697402e-06,
940
+ "loss": 0.5308313369750977,
941
+ "step": 660
942
+ },
943
+ {
944
+ "epoch": 0.4200884396715098,
945
+ "grad_norm": 6.421262741088867,
946
+ "learning_rate": 6.70518938533383e-06,
947
+ "loss": 0.5086846351623535,
948
+ "step": 665
949
+ },
950
+ {
951
+ "epoch": 0.4232469993682881,
952
+ "grad_norm": 4.596707820892334,
953
+ "learning_rate": 6.655974521466608e-06,
954
+ "loss": 0.482611083984375,
955
+ "step": 670
956
+ },
957
+ {
958
+ "epoch": 0.42640555906506633,
959
+ "grad_norm": 5.920119285583496,
960
+ "learning_rate": 6.60657878553709e-06,
961
+ "loss": 0.5203302383422852,
962
+ "step": 675
963
+ },
964
+ {
965
+ "epoch": 0.4295641187618446,
966
+ "grad_norm": 5.271801948547363,
967
+ "learning_rate": 6.55700757274219e-06,
968
+ "loss": 0.5038948059082031,
969
+ "step": 680
970
+ },
971
+ {
972
+ "epoch": 0.4327226784586229,
973
+ "grad_norm": 4.902810096740723,
974
+ "learning_rate": 6.5072662974450925e-06,
975
+ "loss": 0.49909319877624514,
976
+ "step": 685
977
+ },
978
+ {
979
+ "epoch": 0.43588123815540114,
980
+ "grad_norm": 5.071783542633057,
981
+ "learning_rate": 6.457360392583885e-06,
982
+ "loss": 0.47010602951049807,
983
+ "step": 690
984
+ },
985
+ {
986
+ "epoch": 0.4390397978521794,
987
+ "grad_norm": 4.376701354980469,
988
+ "learning_rate": 6.407295309078139e-06,
989
+ "loss": 0.4706730842590332,
990
+ "step": 695
991
+ },
992
+ {
993
+ "epoch": 0.4421983575489577,
994
+ "grad_norm": 4.335845947265625,
995
+ "learning_rate": 6.3570765152335474e-06,
996
+ "loss": 0.49788055419921873,
997
+ "step": 700
998
+ },
999
+ {
1000
+ "epoch": 0.44535691724573595,
1001
+ "grad_norm": 5.820546627044678,
1002
+ "learning_rate": 6.3067094961446536e-06,
1003
+ "loss": 0.4695309638977051,
1004
+ "step": 705
1005
+ },
1006
+ {
1007
+ "epoch": 0.4485154769425142,
1008
+ "grad_norm": 7.545719623565674,
1009
+ "learning_rate": 6.256199753095745e-06,
1010
+ "loss": 0.4799496650695801,
1011
+ "step": 710
1012
+ },
1013
+ {
1014
+ "epoch": 0.4516740366392925,
1015
+ "grad_norm": 3.620755195617676,
1016
+ "learning_rate": 6.20555280295998e-06,
1017
+ "loss": 0.4894589424133301,
1018
+ "step": 715
1019
+ },
1020
+ {
1021
+ "epoch": 0.45483259633607076,
1022
+ "grad_norm": 4.989402770996094,
1023
+ "learning_rate": 6.154774177596816e-06,
1024
+ "loss": 0.5137953758239746,
1025
+ "step": 720
1026
+ },
1027
+ {
1028
+ "epoch": 0.457991156032849,
1029
+ "grad_norm": 3.780259132385254,
1030
+ "learning_rate": 6.1038694232478e-06,
1031
+ "loss": 0.4705362319946289,
1032
+ "step": 725
1033
+ },
1034
+ {
1035
+ "epoch": 0.46114971572962726,
1036
+ "grad_norm": 6.526124954223633,
1037
+ "learning_rate": 6.052844099930785e-06,
1038
+ "loss": 0.4875026702880859,
1039
+ "step": 730
1040
+ },
1041
+ {
1042
+ "epoch": 0.46430827542640557,
1043
+ "grad_norm": 5.49247932434082,
1044
+ "learning_rate": 6.001703780832636e-06,
1045
+ "loss": 0.5183460712432861,
1046
+ "step": 735
1047
+ },
1048
+ {
1049
+ "epoch": 0.4674668351231838,
1050
+ "grad_norm": 6.2441911697387695,
1051
+ "learning_rate": 5.950454051700519e-06,
1052
+ "loss": 0.47825374603271487,
1053
+ "step": 740
1054
+ },
1055
+ {
1056
+ "epoch": 0.4706253948199621,
1057
+ "grad_norm": 6.424279689788818,
1058
+ "learning_rate": 5.899100510231783e-06,
1059
+ "loss": 0.4919153690338135,
1060
+ "step": 745
1061
+ },
1062
+ {
1063
+ "epoch": 0.4737839545167404,
1064
+ "grad_norm": 5.71867561340332,
1065
+ "learning_rate": 5.847648765462581e-06,
1066
+ "loss": 0.509503984451294,
1067
+ "step": 750
1068
+ },
1069
+ {
1070
+ "epoch": 0.47694251421351863,
1071
+ "grad_norm": 5.24619722366333,
1072
+ "learning_rate": 5.796104437155213e-06,
1073
+ "loss": 0.4622642040252686,
1074
+ "step": 755
1075
+ },
1076
+ {
1077
+ "epoch": 0.4801010739102969,
1078
+ "grad_norm": 3.5892302989959717,
1079
+ "learning_rate": 5.744473155184314e-06,
1080
+ "loss": 0.4963216781616211,
1081
+ "step": 760
1082
+ },
1083
+ {
1084
+ "epoch": 0.4832596336070752,
1085
+ "grad_norm": 5.192661285400391,
1086
+ "learning_rate": 5.692760558921949e-06,
1087
+ "loss": 0.500042724609375,
1088
+ "step": 765
1089
+ },
1090
+ {
1091
+ "epoch": 0.48641819330385344,
1092
+ "grad_norm": 5.112095355987549,
1093
+ "learning_rate": 5.640972296621644e-06,
1094
+ "loss": 0.46506643295288086,
1095
+ "step": 770
1096
+ },
1097
+ {
1098
+ "epoch": 0.4895767530006317,
1099
+ "grad_norm": 10.79024600982666,
1100
+ "learning_rate": 5.589114024801469e-06,
1101
+ "loss": 0.4969675540924072,
1102
+ "step": 775
1103
+ },
1104
+ {
1105
+ "epoch": 0.49273531269741,
1106
+ "grad_norm": 7.398629665374756,
1107
+ "learning_rate": 5.537191407626209e-06,
1108
+ "loss": 0.48169984817504885,
1109
+ "step": 780
1110
+ },
1111
+ {
1112
+ "epoch": 0.49589387239418825,
1113
+ "grad_norm": 5.008076190948486,
1114
+ "learning_rate": 5.485210116288704e-06,
1115
+ "loss": 0.44950165748596194,
1116
+ "step": 785
1117
+ },
1118
+ {
1119
+ "epoch": 0.4990524320909665,
1120
+ "grad_norm": 8.111382484436035,
1121
+ "learning_rate": 5.433175828390418e-06,
1122
+ "loss": 0.46531362533569337,
1123
+ "step": 790
1124
+ },
1125
+ {
1126
+ "epoch": 0.5022109917877448,
1127
+ "grad_norm": 3.6791646480560303,
1128
+ "learning_rate": 5.381094227321305e-06,
1129
+ "loss": 0.47532038688659667,
1130
+ "step": 795
1131
+ },
1132
+ {
1133
+ "epoch": 0.505369551484523,
1134
+ "grad_norm": 5.547214508056641,
1135
+ "learning_rate": 5.328971001639054e-06,
1136
+ "loss": 0.4383370399475098,
1137
+ "step": 800
1138
+ },
1139
+ {
1140
+ "epoch": 0.5085281111813014,
1141
+ "grad_norm": 6.505672454833984,
1142
+ "learning_rate": 5.2768118444477545e-06,
1143
+ "loss": 0.4582944393157959,
1144
+ "step": 805
1145
+ },
1146
+ {
1147
+ "epoch": 0.5116866708780796,
1148
+ "grad_norm": 4.160226345062256,
1149
+ "learning_rate": 5.224622452776077e-06,
1150
+ "loss": 0.4826343059539795,
1151
+ "step": 810
1152
+ },
1153
+ {
1154
+ "epoch": 0.5148452305748579,
1155
+ "grad_norm": 4.850459575653076,
1156
+ "learning_rate": 5.172408526955025e-06,
1157
+ "loss": 0.5108707427978516,
1158
+ "step": 815
1159
+ },
1160
+ {
1161
+ "epoch": 0.5180037902716361,
1162
+ "grad_norm": 4.987863540649414,
1163
+ "learning_rate": 5.120175769995314e-06,
1164
+ "loss": 0.4575661659240723,
1165
+ "step": 820
1166
+ },
1167
+ {
1168
+ "epoch": 0.5211623499684144,
1169
+ "grad_norm": 4.8488545417785645,
1170
+ "learning_rate": 5.0679298869644745e-06,
1171
+ "loss": 0.4811102867126465,
1172
+ "step": 825
1173
+ },
1174
+ {
1175
+ "epoch": 0.5243209096651926,
1176
+ "grad_norm": 6.43471097946167,
1177
+ "learning_rate": 5.015676584363716e-06,
1178
+ "loss": 0.451984167098999,
1179
+ "step": 830
1180
+ },
1181
+ {
1182
+ "epoch": 0.527479469361971,
1183
+ "grad_norm": 7.072356700897217,
1184
+ "learning_rate": 4.963421569504643e-06,
1185
+ "loss": 0.48969740867614747,
1186
+ "step": 835
1187
+ },
1188
+ {
1189
+ "epoch": 0.5306380290587492,
1190
+ "grad_norm": 4.6530961990356445,
1191
+ "learning_rate": 4.911170549885877e-06,
1192
+ "loss": 0.4655935287475586,
1193
+ "step": 840
1194
+ },
1195
+ {
1196
+ "epoch": 0.5337965887555275,
1197
+ "grad_norm": 4.305090427398682,
1198
+ "learning_rate": 4.858929232569671e-06,
1199
+ "loss": 0.45367937088012694,
1200
+ "step": 845
1201
+ },
1202
+ {
1203
+ "epoch": 0.5369551484523057,
1204
+ "grad_norm": 5.053590297698975,
1205
+ "learning_rate": 4.806703323558546e-06,
1206
+ "loss": 0.47137908935546874,
1207
+ "step": 850
1208
+ },
1209
+ {
1210
+ "epoch": 0.540113708149084,
1211
+ "grad_norm": 5.136931896209717,
1212
+ "learning_rate": 4.7544985271720724e-06,
1213
+ "loss": 0.462619686126709,
1214
+ "step": 855
1215
+ },
1216
+ {
1217
+ "epoch": 0.5432722678458622,
1218
+ "grad_norm": 4.6438117027282715,
1219
+ "learning_rate": 4.702320545423814e-06,
1220
+ "loss": 0.45745153427124025,
1221
+ "step": 860
1222
+ },
1223
+ {
1224
+ "epoch": 0.5464308275426406,
1225
+ "grad_norm": 4.17106819152832,
1226
+ "learning_rate": 4.6501750773985325e-06,
1227
+ "loss": 0.45148048400878904,
1228
+ "step": 865
1229
+ },
1230
+ {
1231
+ "epoch": 0.5495893872394189,
1232
+ "grad_norm": 6.523557186126709,
1233
+ "learning_rate": 4.5980678186297216e-06,
1234
+ "loss": 0.4843231201171875,
1235
+ "step": 870
1236
+ },
1237
+ {
1238
+ "epoch": 0.5527479469361971,
1239
+ "grad_norm": 5.558905601501465,
1240
+ "learning_rate": 4.5460044604774986e-06,
1241
+ "loss": 0.48410682678222655,
1242
+ "step": 875
1243
+ },
1244
+ {
1245
+ "epoch": 0.5559065066329754,
1246
+ "grad_norm": 16.481489181518555,
1247
+ "learning_rate": 4.493990689506987e-06,
1248
+ "loss": 0.5125801086425781,
1249
+ "step": 880
1250
+ },
1251
+ {
1252
+ "epoch": 0.5590650663297536,
1253
+ "grad_norm": 11.119762420654297,
1254
+ "learning_rate": 4.442032186867203e-06,
1255
+ "loss": 0.4498294353485107,
1256
+ "step": 885
1257
+ },
1258
+ {
1259
+ "epoch": 0.5622236260265319,
1260
+ "grad_norm": 4.737103462219238,
1261
+ "learning_rate": 4.39013462767054e-06,
1262
+ "loss": 0.42902708053588867,
1263
+ "step": 890
1264
+ },
1265
+ {
1266
+ "epoch": 0.5653821857233101,
1267
+ "grad_norm": 4.639623641967773,
1268
+ "learning_rate": 4.338303680372905e-06,
1269
+ "loss": 0.48099675178527834,
1270
+ "step": 895
1271
+ },
1272
+ {
1273
+ "epoch": 0.5685407454200885,
1274
+ "grad_norm": 4.945634365081787,
1275
+ "learning_rate": 4.286545006154591e-06,
1276
+ "loss": 0.48535900115966796,
1277
+ "step": 900
1278
+ },
1279
+ {
1280
+ "epoch": 0.5716993051168667,
1281
+ "grad_norm": 5.197798252105713,
1282
+ "learning_rate": 4.234864258301943e-06,
1283
+ "loss": 0.44563875198364256,
1284
+ "step": 905
1285
+ },
1286
+ {
1287
+ "epoch": 0.574857864813645,
1288
+ "grad_norm": 10.204875946044922,
1289
+ "learning_rate": 4.1832670815898786e-06,
1290
+ "loss": 0.4872860908508301,
1291
+ "step": 910
1292
+ },
1293
+ {
1294
+ "epoch": 0.5780164245104232,
1295
+ "grad_norm": 3.8306641578674316,
1296
+ "learning_rate": 4.131759111665349e-06,
1297
+ "loss": 0.4326223373413086,
1298
+ "step": 915
1299
+ },
1300
+ {
1301
+ "epoch": 0.5811749842072015,
1302
+ "grad_norm": 4.572636127471924,
1303
+ "learning_rate": 4.080345974431786e-06,
1304
+ "loss": 0.45463714599609373,
1305
+ "step": 920
1306
+ },
1307
+ {
1308
+ "epoch": 0.5843335439039797,
1309
+ "grad_norm": 11.356803894042969,
1310
+ "learning_rate": 4.029033285434622e-06,
1311
+ "loss": 0.4753840446472168,
1312
+ "step": 925
1313
+ },
1314
+ {
1315
+ "epoch": 0.5874921036007581,
1316
+ "grad_norm": 4.959653377532959,
1317
+ "learning_rate": 3.977826649247938e-06,
1318
+ "loss": 0.4406925678253174,
1319
+ "step": 930
1320
+ },
1321
+ {
1322
+ "epoch": 0.5906506632975363,
1323
+ "grad_norm": 6.6737847328186035,
1324
+ "learning_rate": 3.926731658862307e-06,
1325
+ "loss": 0.4663890838623047,
1326
+ "step": 935
1327
+ },
1328
+ {
1329
+ "epoch": 0.5938092229943146,
1330
+ "grad_norm": 5.214199066162109,
1331
+ "learning_rate": 3.8757538950739125e-06,
1332
+ "loss": 0.41785554885864257,
1333
+ "step": 940
1334
+ },
1335
+ {
1336
+ "epoch": 0.5969677826910929,
1337
+ "grad_norm": 7.584545135498047,
1338
+ "learning_rate": 3.824898925874982e-06,
1339
+ "loss": 0.441466236114502,
1340
+ "step": 945
1341
+ },
1342
+ {
1343
+ "epoch": 0.6001263423878711,
1344
+ "grad_norm": 8.893377304077148,
1345
+ "learning_rate": 3.774172305845636e-06,
1346
+ "loss": 0.43332729339599607,
1347
+ "step": 950
1348
+ },
1349
+ {
1350
+ "epoch": 0.6032849020846494,
1351
+ "grad_norm": 4.755770206451416,
1352
+ "learning_rate": 3.723579575547194e-06,
1353
+ "loss": 0.4704784870147705,
1354
+ "step": 955
1355
+ },
1356
+ {
1357
+ "epoch": 0.6064434617814277,
1358
+ "grad_norm": 4.076940536499023,
1359
+ "learning_rate": 3.673126260917006e-06,
1360
+ "loss": 0.4546257972717285,
1361
+ "step": 960
1362
+ },
1363
+ {
1364
+ "epoch": 0.609602021478206,
1365
+ "grad_norm": 4.379377365112305,
1366
+ "learning_rate": 3.622817872664905e-06,
1367
+ "loss": 0.4762744426727295,
1368
+ "step": 965
1369
+ },
1370
+ {
1371
+ "epoch": 0.6127605811749842,
1372
+ "grad_norm": 4.65653133392334,
1373
+ "learning_rate": 3.5726599056712828e-06,
1374
+ "loss": 0.48206915855407717,
1375
+ "step": 970
1376
+ },
1377
+ {
1378
+ "epoch": 0.6159191408717625,
1379
+ "grad_norm": 4.485464096069336,
1380
+ "learning_rate": 3.522657838386933e-06,
1381
+ "loss": 0.4311253547668457,
1382
+ "step": 975
1383
+ },
1384
+ {
1385
+ "epoch": 0.6190777005685407,
1386
+ "grad_norm": 4.724522590637207,
1387
+ "learning_rate": 3.472817132234669e-06,
1388
+ "loss": 0.42822580337524413,
1389
+ "step": 980
1390
+ },
1391
+ {
1392
+ "epoch": 0.622236260265319,
1393
+ "grad_norm": 12.347429275512695,
1394
+ "learning_rate": 3.423143231012803e-06,
1395
+ "loss": 0.41117286682128906,
1396
+ "step": 985
1397
+ },
1398
+ {
1399
+ "epoch": 0.6253948199620973,
1400
+ "grad_norm": 3.842802047729492,
1401
+ "learning_rate": 3.37364156030056e-06,
1402
+ "loss": 0.42133440971374514,
1403
+ "step": 990
1404
+ },
1405
+ {
1406
+ "epoch": 0.6285533796588756,
1407
+ "grad_norm": 6.476712226867676,
1408
+ "learning_rate": 3.3243175268654656e-06,
1409
+ "loss": 0.44316806793212893,
1410
+ "step": 995
1411
+ },
1412
+ {
1413
+ "epoch": 0.6317119393556538,
1414
+ "grad_norm": 3.81174898147583,
1415
+ "learning_rate": 3.2751765180728048e-06,
1416
+ "loss": 0.46492853164672854,
1417
+ "step": 1000
1418
+ },
1419
+ {
1420
+ "epoch": 0.6348704990524321,
1421
+ "grad_norm": 4.995597839355469,
1422
+ "learning_rate": 3.2262239012971852e-06,
1423
+ "loss": 0.44008607864379884,
1424
+ "step": 1005
1425
+ },
1426
+ {
1427
+ "epoch": 0.6380290587492103,
1428
+ "grad_norm": 4.229401111602783,
1429
+ "learning_rate": 3.177465023336306e-06,
1430
+ "loss": 0.41254324913024903,
1431
+ "step": 1010
1432
+ },
1433
+ {
1434
+ "epoch": 0.6411876184459886,
1435
+ "grad_norm": 3.732438087463379,
1436
+ "learning_rate": 3.12890520982694e-06,
1437
+ "loss": 0.4186702728271484,
1438
+ "step": 1015
1439
+ },
1440
+ {
1441
+ "epoch": 0.6443461781427668,
1442
+ "grad_norm": 5.717037677764893,
1443
+ "learning_rate": 3.0805497646632608e-06,
1444
+ "loss": 0.43721446990966795,
1445
+ "step": 1020
1446
+ },
1447
+ {
1448
+ "epoch": 0.6475047378395452,
1449
+ "grad_norm": 7.989684581756592,
1450
+ "learning_rate": 3.032403969417523e-06,
1451
+ "loss": 0.44131174087524416,
1452
+ "step": 1025
1453
+ },
1454
+ {
1455
+ "epoch": 0.6506632975363235,
1456
+ "grad_norm": 4.365130424499512,
1457
+ "learning_rate": 2.9844730827631944e-06,
1458
+ "loss": 0.41554985046386717,
1459
+ "step": 1030
1460
+ },
1461
+ {
1462
+ "epoch": 0.6538218572331017,
1463
+ "grad_norm": 9.641366004943848,
1464
+ "learning_rate": 2.9367623399005784e-06,
1465
+ "loss": 0.4361703872680664,
1466
+ "step": 1035
1467
+ },
1468
+ {
1469
+ "epoch": 0.65698041692988,
1470
+ "grad_norm": 5.087986469268799,
1471
+ "learning_rate": 2.889276951985005e-06,
1472
+ "loss": 0.41468124389648436,
1473
+ "step": 1040
1474
+ },
1475
+ {
1476
+ "epoch": 0.6601389766266582,
1477
+ "grad_norm": 4.321792125701904,
1478
+ "learning_rate": 2.84202210555765e-06,
1479
+ "loss": 0.39736785888671877,
1480
+ "step": 1045
1481
+ },
1482
+ {
1483
+ "epoch": 0.6632975363234365,
1484
+ "grad_norm": 5.697478771209717,
1485
+ "learning_rate": 2.7950029619790396e-06,
1486
+ "loss": 0.4284470558166504,
1487
+ "step": 1050
1488
+ },
1489
+ {
1490
+ "epoch": 0.6664560960202148,
1491
+ "grad_norm": 5.575089454650879,
1492
+ "learning_rate": 2.748224656865304e-06,
1493
+ "loss": 0.4388558387756348,
1494
+ "step": 1055
1495
+ },
1496
+ {
1497
+ "epoch": 0.6696146557169931,
1498
+ "grad_norm": 6.308027267456055,
1499
+ "learning_rate": 2.701692299527252e-06,
1500
+ "loss": 0.4417069435119629,
1501
+ "step": 1060
1502
+ },
1503
+ {
1504
+ "epoch": 0.6727732154137713,
1505
+ "grad_norm": 4.856866359710693,
1506
+ "learning_rate": 2.655410972412303e-06,
1507
+ "loss": 0.4059807777404785,
1508
+ "step": 1065
1509
+ },
1510
+ {
1511
+ "epoch": 0.6759317751105496,
1512
+ "grad_norm": 4.12819766998291,
1513
+ "learning_rate": 2.6093857305493666e-06,
1514
+ "loss": 0.4208412170410156,
1515
+ "step": 1070
1516
+ },
1517
+ {
1518
+ "epoch": 0.6790903348073278,
1519
+ "grad_norm": 4.240756511688232,
1520
+ "learning_rate": 2.563621600996714e-06,
1521
+ "loss": 0.4176218032836914,
1522
+ "step": 1075
1523
+ },
1524
+ {
1525
+ "epoch": 0.6822488945041061,
1526
+ "grad_norm": 4.019255638122559,
1527
+ "learning_rate": 2.5181235822928996e-06,
1528
+ "loss": 0.4425664901733398,
1529
+ "step": 1080
1530
+ },
1531
+ {
1532
+ "epoch": 0.6854074542008844,
1533
+ "grad_norm": 5.519577980041504,
1534
+ "learning_rate": 2.472896643910802e-06,
1535
+ "loss": 0.4453401565551758,
1536
+ "step": 1085
1537
+ },
1538
+ {
1539
+ "epoch": 0.6885660138976627,
1540
+ "grad_norm": 4.330941200256348,
1541
+ "learning_rate": 2.427945725714841e-06,
1542
+ "loss": 0.44957680702209474,
1543
+ "step": 1090
1544
+ },
1545
+ {
1546
+ "epoch": 0.691724573594441,
1547
+ "grad_norm": 3.8840339183807373,
1548
+ "learning_rate": 2.3832757374214223e-06,
1549
+ "loss": 0.4365537166595459,
1550
+ "step": 1095
1551
+ },
1552
+ {
1553
+ "epoch": 0.6948831332912192,
1554
+ "grad_norm": 5.372223854064941,
1555
+ "learning_rate": 2.3388915580626807e-06,
1556
+ "loss": 0.43989953994750974,
1557
+ "step": 1100
1558
+ },
1559
+ {
1560
+ "epoch": 0.6980416929879975,
1561
+ "grad_norm": 3.8054025173187256,
1562
+ "learning_rate": 2.294798035453573e-06,
1563
+ "loss": 0.43607091903686523,
1564
+ "step": 1105
1565
+ },
1566
+ {
1567
+ "epoch": 0.7012002526847757,
1568
+ "grad_norm": 4.409178733825684,
1569
+ "learning_rate": 2.2509999856623823e-06,
1570
+ "loss": 0.4031815528869629,
1571
+ "step": 1110
1572
+ },
1573
+ {
1574
+ "epoch": 0.704358812381554,
1575
+ "grad_norm": 13.020115852355957,
1576
+ "learning_rate": 2.207502192484685e-06,
1577
+ "loss": 0.41339702606201173,
1578
+ "step": 1115
1579
+ },
1580
+ {
1581
+ "epoch": 0.7075173720783323,
1582
+ "grad_norm": 36.078800201416016,
1583
+ "learning_rate": 2.1643094069208457e-06,
1584
+ "loss": 0.4253931999206543,
1585
+ "step": 1120
1586
+ },
1587
+ {
1588
+ "epoch": 0.7106759317751106,
1589
+ "grad_norm": 3.9843294620513916,
1590
+ "learning_rate": 2.1214263466570966e-06,
1591
+ "loss": 0.4091469764709473,
1592
+ "step": 1125
1593
+ },
1594
+ {
1595
+ "epoch": 0.7138344914718888,
1596
+ "grad_norm": 6.965957164764404,
1597
+ "learning_rate": 2.0788576955502547e-06,
1598
+ "loss": 0.44600811004638674,
1599
+ "step": 1130
1600
+ },
1601
+ {
1602
+ "epoch": 0.7169930511686671,
1603
+ "grad_norm": 6.177760124206543,
1604
+ "learning_rate": 2.0366081031161265e-06,
1605
+ "loss": 0.39556307792663575,
1606
+ "step": 1135
1607
+ },
1608
+ {
1609
+ "epoch": 0.7201516108654453,
1610
+ "grad_norm": 7.617034912109375,
1611
+ "learning_rate": 1.994682184021675e-06,
1612
+ "loss": 0.4171637535095215,
1613
+ "step": 1140
1614
+ },
1615
+ {
1616
+ "epoch": 0.7233101705622236,
1617
+ "grad_norm": 5.705893039703369,
1618
+ "learning_rate": 1.9530845175809838e-06,
1619
+ "loss": 0.4226199150085449,
1620
+ "step": 1145
1621
+ },
1622
+ {
1623
+ "epoch": 0.7264687302590019,
1624
+ "grad_norm": 5.494991302490234,
1625
+ "learning_rate": 1.911819647255088e-06,
1626
+ "loss": 0.44510669708251954,
1627
+ "step": 1150
1628
+ },
1629
+ {
1630
+ "epoch": 0.7296272899557802,
1631
+ "grad_norm": 4.8207106590271,
1632
+ "learning_rate": 1.8708920801557258e-06,
1633
+ "loss": 0.37134432792663574,
1634
+ "step": 1155
1635
+ },
1636
+ {
1637
+ "epoch": 0.7327858496525584,
1638
+ "grad_norm": 4.485637187957764,
1639
+ "learning_rate": 1.8303062865530407e-06,
1640
+ "loss": 0.37236676216125486,
1641
+ "step": 1160
1642
+ },
1643
+ {
1644
+ "epoch": 0.7359444093493367,
1645
+ "grad_norm": 5.711328506469727,
1646
+ "learning_rate": 1.7900666993873306e-06,
1647
+ "loss": 0.4246394157409668,
1648
+ "step": 1165
1649
+ },
1650
+ {
1651
+ "epoch": 0.7391029690461149,
1652
+ "grad_norm": 6.0155439376831055,
1653
+ "learning_rate": 1.7501777137848624e-06,
1654
+ "loss": 0.4042776584625244,
1655
+ "step": 1170
1656
+ },
1657
+ {
1658
+ "epoch": 0.7422615287428932,
1659
+ "grad_norm": 3.9582607746124268,
1660
+ "learning_rate": 1.7106436865778182e-06,
1661
+ "loss": 0.40292797088623045,
1662
+ "step": 1175
1663
+ },
1664
+ {
1665
+ "epoch": 0.7454200884396716,
1666
+ "grad_norm": 5.098707675933838,
1667
+ "learning_rate": 1.6714689358284282e-06,
1668
+ "loss": 0.4129955768585205,
1669
+ "step": 1180
1670
+ },
1671
+ {
1672
+ "epoch": 0.7485786481364498,
1673
+ "grad_norm": 3.7749767303466797,
1674
+ "learning_rate": 1.6326577403573285e-06,
1675
+ "loss": 0.4280905246734619,
1676
+ "step": 1185
1677
+ },
1678
+ {
1679
+ "epoch": 0.7517372078332281,
1680
+ "grad_norm": 4.843114852905273,
1681
+ "learning_rate": 1.5942143392762178e-06,
1682
+ "loss": 0.41041364669799807,
1683
+ "step": 1190
1684
+ },
1685
+ {
1686
+ "epoch": 0.7548957675300063,
1687
+ "grad_norm": 3.8197455406188965,
1688
+ "learning_rate": 1.5561429315248405e-06,
1689
+ "loss": 0.38605608940124514,
1690
+ "step": 1195
1691
+ },
1692
+ {
1693
+ "epoch": 0.7580543272267846,
1694
+ "grad_norm": 5.150450229644775,
1695
+ "learning_rate": 1.5184476754123644e-06,
1696
+ "loss": 0.4118035316467285,
1697
+ "step": 1200
1698
+ },
1699
+ {
1700
+ "epoch": 0.7612128869235628,
1701
+ "grad_norm": 4.720973014831543,
1702
+ "learning_rate": 1.4811326881631937e-06,
1703
+ "loss": 0.3880918502807617,
1704
+ "step": 1205
1705
+ },
1706
+ {
1707
+ "epoch": 0.7643714466203412,
1708
+ "grad_norm": 3.58608341217041,
1709
+ "learning_rate": 1.4442020454672689e-06,
1710
+ "loss": 0.39533357620239257,
1711
+ "step": 1210
1712
+ },
1713
+ {
1714
+ "epoch": 0.7675300063171194,
1715
+ "grad_norm": 4.909360885620117,
1716
+ "learning_rate": 1.407659781034903e-06,
1717
+ "loss": 0.41850624084472654,
1718
+ "step": 1215
1719
+ },
1720
+ {
1721
+ "epoch": 0.7706885660138977,
1722
+ "grad_norm": 4.525369167327881,
1723
+ "learning_rate": 1.371509886156206e-06,
1724
+ "loss": 0.3624251365661621,
1725
+ "step": 1220
1726
+ },
1727
+ {
1728
+ "epoch": 0.7738471257106759,
1729
+ "grad_norm": 5.708522319793701,
1730
+ "learning_rate": 1.335756309265136e-06,
1731
+ "loss": 0.43349485397338866,
1732
+ "step": 1225
1733
+ },
1734
+ {
1735
+ "epoch": 0.7770056854074542,
1736
+ "grad_norm": 4.207345962524414,
1737
+ "learning_rate": 1.3004029555082453e-06,
1738
+ "loss": 0.4073651313781738,
1739
+ "step": 1230
1740
+ },
1741
+ {
1742
+ "epoch": 0.7801642451042324,
1743
+ "grad_norm": 5.0260748863220215,
1744
+ "learning_rate": 1.2654536863181328e-06,
1745
+ "loss": 0.4125555992126465,
1746
+ "step": 1235
1747
+ },
1748
+ {
1749
+ "epoch": 0.7833228048010107,
1750
+ "grad_norm": 5.860008239746094,
1751
+ "learning_rate": 1.2309123189916904e-06,
1752
+ "loss": 0.4178868293762207,
1753
+ "step": 1240
1754
+ },
1755
+ {
1756
+ "epoch": 0.786481364497789,
1757
+ "grad_norm": 5.229427814483643,
1758
+ "learning_rate": 1.1967826262731603e-06,
1759
+ "loss": 0.4188692092895508,
1760
+ "step": 1245
1761
+ },
1762
+ {
1763
+ "epoch": 0.7896399241945673,
1764
+ "grad_norm": 4.521994590759277,
1765
+ "learning_rate": 1.1630683359420653e-06,
1766
+ "loss": 0.41559038162231443,
1767
+ "step": 1250
1768
+ },
1769
+ {
1770
+ "epoch": 0.7927984838913456,
1771
+ "grad_norm": 4.955549240112305,
1772
+ "learning_rate": 1.12977313040604e-06,
1773
+ "loss": 0.37903332710266113,
1774
+ "step": 1255
1775
+ },
1776
+ {
1777
+ "epoch": 0.7959570435881238,
1778
+ "grad_norm": 5.9682698249816895,
1779
+ "learning_rate": 1.0969006462986253e-06,
1780
+ "loss": 0.4030604362487793,
1781
+ "step": 1260
1782
+ },
1783
+ {
1784
+ "epoch": 0.799115603284902,
1785
+ "grad_norm": 6.07213830947876,
1786
+ "learning_rate": 1.064454474082064e-06,
1787
+ "loss": 0.3850099563598633,
1788
+ "step": 1265
1789
+ },
1790
+ {
1791
+ "epoch": 0.8022741629816803,
1792
+ "grad_norm": 7.014178276062012,
1793
+ "learning_rate": 1.0324381576551324e-06,
1794
+ "loss": 0.37700443267822265,
1795
+ "step": 1270
1796
+ },
1797
+ {
1798
+ "epoch": 0.8054327226784587,
1799
+ "grad_norm": 9.079551696777344,
1800
+ "learning_rate": 1.0008551939660678e-06,
1801
+ "loss": 0.39804997444152834,
1802
+ "step": 1275
1803
+ },
1804
+ {
1805
+ "epoch": 0.8085912823752369,
1806
+ "grad_norm": 4.78026008605957,
1807
+ "learning_rate": 9.697090326306096e-07,
1808
+ "loss": 0.4037793636322021,
1809
+ "step": 1280
1810
+ },
1811
+ {
1812
+ "epoch": 0.8117498420720152,
1813
+ "grad_norm": 9.802809715270996,
1814
+ "learning_rate": 9.390030755552243e-07,
1815
+ "loss": 0.39660234451293946,
1816
+ "step": 1285
1817
+ },
1818
+ {
1819
+ "epoch": 0.8149084017687934,
1820
+ "grad_norm": 9.105223655700684,
1821
+ "learning_rate": 9.087406765655355e-07,
1822
+ "loss": 0.39896416664123535,
1823
+ "step": 1290
1824
+ },
1825
+ {
1826
+ "epoch": 0.8180669614655717,
1827
+ "grad_norm": 4.758156776428223,
1828
+ "learning_rate": 8.789251410400024e-07,
1829
+ "loss": 0.39787821769714354,
1830
+ "step": 1295
1831
+ },
1832
+ {
1833
+ "epoch": 0.8212255211623499,
1834
+ "grad_norm": 4.91497278213501,
1835
+ "learning_rate": 8.495597255489007e-07,
1836
+ "loss": 0.37570626735687257,
1837
+ "step": 1300
1838
+ },
1839
+ {
1840
+ "epoch": 0.8243840808591283,
1841
+ "grad_norm": 5.160672187805176,
1842
+ "learning_rate": 8.206476374986177e-07,
1843
+ "loss": 0.3886705875396729,
1844
+ "step": 1305
1845
+ },
1846
+ {
1847
+ "epoch": 0.8275426405559065,
1848
+ "grad_norm": 6.894635200500488,
1849
+ "learning_rate": 7.921920347813333e-07,
1850
+ "loss": 0.401332950592041,
1851
+ "step": 1310
1852
+ },
1853
+ {
1854
+ "epoch": 0.8307012002526848,
1855
+ "grad_norm": 4.611050605773926,
1856
+ "learning_rate": 7.641960254301e-07,
1857
+ "loss": 0.3864955186843872,
1858
+ "step": 1315
1859
+ },
1860
+ {
1861
+ "epoch": 0.833859759949463,
1862
+ "grad_norm": 3.819587469100952,
1863
+ "learning_rate": 7.366626672793714e-07,
1864
+ "loss": 0.3476077079772949,
1865
+ "step": 1320
1866
+ },
1867
+ {
1868
+ "epoch": 0.8370183196462413,
1869
+ "grad_norm": 4.1664323806762695,
1870
+ "learning_rate": 7.095949676310171e-07,
1871
+ "loss": 0.3879021883010864,
1872
+ "step": 1325
1873
+ },
1874
+ {
1875
+ "epoch": 0.8401768793430195,
1876
+ "grad_norm": 4.62161111831665,
1877
+ "learning_rate": 6.829958829258465e-07,
1878
+ "loss": 0.4055939674377441,
1879
+ "step": 1330
1880
+ },
1881
+ {
1882
+ "epoch": 0.8433354390397979,
1883
+ "grad_norm": 5.00872802734375,
1884
+ "learning_rate": 6.568683184206997e-07,
1885
+ "loss": 0.38941450119018556,
1886
+ "step": 1335
1887
+ },
1888
+ {
1889
+ "epoch": 0.8464939987365762,
1890
+ "grad_norm": 6.215795516967773,
1891
+ "learning_rate": 6.312151278711237e-07,
1892
+ "loss": 0.395129919052124,
1893
+ "step": 1340
1894
+ },
1895
+ {
1896
+ "epoch": 0.8496525584333544,
1897
+ "grad_norm": 4.24306583404541,
1898
+ "learning_rate": 6.060391132196713e-07,
1899
+ "loss": 0.3887277841567993,
1900
+ "step": 1345
1901
+ },
1902
+ {
1903
+ "epoch": 0.8528111181301327,
1904
+ "grad_norm": 4.381753921508789,
1905
+ "learning_rate": 5.813430242898649e-07,
1906
+ "loss": 0.41381015777587893,
1907
+ "step": 1350
1908
+ },
1909
+ {
1910
+ "epoch": 0.8559696778269109,
1911
+ "grad_norm": 4.8990960121154785,
1912
+ "learning_rate": 5.571295584858466e-07,
1913
+ "loss": 0.37618155479431153,
1914
+ "step": 1355
1915
+ },
1916
+ {
1917
+ "epoch": 0.8591282375236892,
1918
+ "grad_norm": 6.661323547363281,
1919
+ "learning_rate": 5.334013604977606e-07,
1920
+ "loss": 0.37935657501220704,
1921
+ "step": 1360
1922
+ },
1923
+ {
1924
+ "epoch": 0.8622867972204674,
1925
+ "grad_norm": 5.2708420753479,
1926
+ "learning_rate": 5.101610220128878e-07,
1927
+ "loss": 0.3664952039718628,
1928
+ "step": 1365
1929
+ },
1930
+ {
1931
+ "epoch": 0.8654453569172458,
1932
+ "grad_norm": 4.152669429779053,
1933
+ "learning_rate": 4.874110814325723e-07,
1934
+ "loss": 0.35345609188079835,
1935
+ "step": 1370
1936
+ },
1937
+ {
1938
+ "epoch": 0.868603916614024,
1939
+ "grad_norm": 4.620352268218994,
1940
+ "learning_rate": 4.651540235949659e-07,
1941
+ "loss": 0.4243894100189209,
1942
+ "step": 1375
1943
+ },
1944
+ {
1945
+ "epoch": 0.8717624763108023,
1946
+ "grad_norm": 6.066606044769287,
1947
+ "learning_rate": 4.433922795036255e-07,
1948
+ "loss": 0.3778834819793701,
1949
+ "step": 1380
1950
+ },
1951
+ {
1952
+ "epoch": 0.8749210360075805,
1953
+ "grad_norm": 5.138670921325684,
1954
+ "learning_rate": 4.221282260619891e-07,
1955
+ "loss": 0.3627819776535034,
1956
+ "step": 1385
1957
+ },
1958
+ {
1959
+ "epoch": 0.8780795957043588,
1960
+ "grad_norm": 5.9094319343566895,
1961
+ "learning_rate": 4.0136418581375903e-07,
1962
+ "loss": 0.4040857791900635,
1963
+ "step": 1390
1964
+ },
1965
+ {
1966
+ "epoch": 0.881238155401137,
1967
+ "grad_norm": 3.5370473861694336,
1968
+ "learning_rate": 3.811024266892305e-07,
1969
+ "loss": 0.3865286111831665,
1970
+ "step": 1395
1971
+ },
1972
+ {
1973
+ "epoch": 0.8843967150979154,
1974
+ "grad_norm": 6.009340763092041,
1975
+ "learning_rate": 3.6134516175757193e-07,
1976
+ "loss": 0.39809718132019045,
1977
+ "step": 1400
1978
+ },
1979
+ {
1980
+ "epoch": 0.8875552747946936,
1981
+ "grad_norm": 5.613467216491699,
1982
+ "learning_rate": 3.420945489851085e-07,
1983
+ "loss": 0.3768470048904419,
1984
+ "step": 1405
1985
+ },
1986
+ {
1987
+ "epoch": 0.8907138344914719,
1988
+ "grad_norm": 3.862687587738037,
1989
+ "learning_rate": 3.2335269099962097e-07,
1990
+ "loss": 0.39695086479187014,
1991
+ "step": 1410
1992
+ },
1993
+ {
1994
+ "epoch": 0.8938723941882502,
1995
+ "grad_norm": 4.385960102081299,
1996
+ "learning_rate": 3.051216348606867e-07,
1997
+ "loss": 0.3700049877166748,
1998
+ "step": 1415
1999
+ },
2000
+ {
2001
+ "epoch": 0.8970309538850284,
2002
+ "grad_norm": 6.5399580001831055,
2003
+ "learning_rate": 2.8740337183609467e-07,
2004
+ "loss": 0.42552886009216306,
2005
+ "step": 1420
2006
+ },
2007
+ {
2008
+ "epoch": 0.9001895135818067,
2009
+ "grad_norm": 6.526892185211182,
2010
+ "learning_rate": 2.7019983718434784e-07,
2011
+ "loss": 0.3663303375244141,
2012
+ "step": 1425
2013
+ },
2014
+ {
2015
+ "epoch": 0.903348073278585,
2016
+ "grad_norm": 5.383205890655518,
2017
+ "learning_rate": 2.5351290994328703e-07,
2018
+ "loss": 0.3943972587585449,
2019
+ "step": 1430
2020
+ },
2021
+ {
2022
+ "epoch": 0.9065066329753633,
2023
+ "grad_norm": 4.110715389251709,
2024
+ "learning_rate": 2.3734441272485808e-07,
2025
+ "loss": 0.34407188892364504,
2026
+ "step": 1435
2027
+ },
2028
+ {
2029
+ "epoch": 0.9096651926721415,
2030
+ "grad_norm": 4.108532905578613,
2031
+ "learning_rate": 2.2169611151603543e-07,
2032
+ "loss": 0.37198657989501954,
2033
+ "step": 1440
2034
+ },
2035
+ {
2036
+ "epoch": 0.9128237523689198,
2037
+ "grad_norm": 5.8443603515625,
2038
+ "learning_rate": 2.065697154859375e-07,
2039
+ "loss": 0.39379134178161623,
2040
+ "step": 1445
2041
+ },
2042
+ {
2043
+ "epoch": 0.915982312065698,
2044
+ "grad_norm": 49.09994888305664,
2045
+ "learning_rate": 1.919668767991406e-07,
2046
+ "loss": 0.3990642547607422,
2047
+ "step": 1450
2048
+ },
2049
+ {
2050
+ "epoch": 0.9191408717624763,
2051
+ "grad_norm": 6.8909735679626465,
2052
+ "learning_rate": 1.7788919043522645e-07,
2053
+ "loss": 0.37679917812347413,
2054
+ "step": 1455
2055
+ },
2056
+ {
2057
+ "epoch": 0.9222994314592545,
2058
+ "grad_norm": 5.215435028076172,
2059
+ "learning_rate": 1.6433819401456996e-07,
2060
+ "loss": 0.37651834487915037,
2061
+ "step": 1460
2062
+ },
2063
+ {
2064
+ "epoch": 0.9254579911560329,
2065
+ "grad_norm": 8.452431678771973,
2066
+ "learning_rate": 1.5131536763039523e-07,
2067
+ "loss": 0.380367636680603,
2068
+ "step": 1465
2069
+ },
2070
+ {
2071
+ "epoch": 0.9286165508528111,
2072
+ "grad_norm": 4.024129390716553,
2073
+ "learning_rate": 1.388221336871137e-07,
2074
+ "loss": 0.3974237680435181,
2075
+ "step": 1470
2076
+ },
2077
+ {
2078
+ "epoch": 0.9317751105495894,
2079
+ "grad_norm": 6.6785502433776855,
2080
+ "learning_rate": 1.268598567449647e-07,
2081
+ "loss": 0.39859685897827146,
2082
+ "step": 1475
2083
+ },
2084
+ {
2085
+ "epoch": 0.9349336702463676,
2086
+ "grad_norm": 5.116747856140137,
2087
+ "learning_rate": 1.1542984337097107e-07,
2088
+ "loss": 0.38635711669921874,
2089
+ "step": 1480
2090
+ },
2091
+ {
2092
+ "epoch": 0.9380922299431459,
2093
+ "grad_norm": 5.246705532073975,
2094
+ "learning_rate": 1.0453334199623022e-07,
2095
+ "loss": 0.3891605377197266,
2096
+ "step": 1485
2097
+ },
2098
+ {
2099
+ "epoch": 0.9412507896399241,
2100
+ "grad_norm": 6.839779376983643,
2101
+ "learning_rate": 9.417154277955864e-08,
2102
+ "loss": 0.35381126403808594,
2103
+ "step": 1490
2104
+ },
2105
+ {
2106
+ "epoch": 0.9444093493367025,
2107
+ "grad_norm": 3.8986103534698486,
2108
+ "learning_rate": 8.43455774774965e-08,
2109
+ "loss": 0.35331358909606936,
2110
+ "step": 1495
2111
+ },
2112
+ {
2113
+ "epoch": 0.9475679090334808,
2114
+ "grad_norm": 6.898173809051514,
2115
+ "learning_rate": 7.505651932068981e-08,
2116
+ "loss": 0.370357608795166,
2117
+ "step": 1500
2118
+ },
2119
+ {
2120
+ "epoch": 0.950726468730259,
2121
+ "grad_norm": 6.790672302246094,
2122
+ "learning_rate": 6.630538289667365e-08,
2123
+ "loss": 0.4085134506225586,
2124
+ "step": 1505
2125
+ },
2126
+ {
2127
+ "epoch": 0.9538850284270373,
2128
+ "grad_norm": 8.558964729309082,
2129
+ "learning_rate": 5.809312403904921e-08,
2130
+ "loss": 0.3483954191207886,
2131
+ "step": 1510
2132
+ },
2133
+ {
2134
+ "epoch": 0.9570435881238155,
2135
+ "grad_norm": 6.050388813018799,
2136
+ "learning_rate": 5.04206397230883e-08,
2137
+ "loss": 0.38666410446166993,
2138
+ "step": 1515
2139
+ },
2140
+ {
2141
+ "epoch": 0.9602021478205938,
2142
+ "grad_norm": 5.2335100173950195,
2143
+ "learning_rate": 4.328876796776071e-08,
2144
+ "loss": 0.39545912742614747,
2145
+ "step": 1520
2146
+ },
2147
+ {
2148
+ "epoch": 0.9633607075173721,
2149
+ "grad_norm": 12.68298053741455,
2150
+ "learning_rate": 3.66982877442007e-08,
2151
+ "loss": 0.37050628662109375,
2152
+ "step": 1525
2153
+ },
2154
+ {
2155
+ "epoch": 0.9665192672141504,
2156
+ "grad_norm": 4.251426696777344,
2157
+ "learning_rate": 3.064991889062674e-08,
2158
+ "loss": 0.34967355728149413,
2159
+ "step": 1530
2160
+ },
2161
+ {
2162
+ "epoch": 0.9696778269109286,
2163
+ "grad_norm": 4.3738603591918945,
2164
+ "learning_rate": 2.5144322033717748e-08,
2165
+ "loss": 0.39934329986572265,
2166
+ "step": 1535
2167
+ },
2168
+ {
2169
+ "epoch": 0.9728363866077069,
2170
+ "grad_norm": 8.06247615814209,
2171
+ "learning_rate": 2.018209851645636e-08,
2172
+ "loss": 0.3928250312805176,
2173
+ "step": 1540
2174
+ },
2175
+ {
2176
+ "epoch": 0.9759949463044851,
2177
+ "grad_norm": 4.0968122482299805,
2178
+ "learning_rate": 1.576379033244757e-08,
2179
+ "loss": 0.38792426586151124,
2180
+ "step": 1545
2181
+ },
2182
+ {
2183
+ "epoch": 0.9791535060012634,
2184
+ "grad_norm": 4.197911262512207,
2185
+ "learning_rate": 1.1889880066720538e-08,
2186
+ "loss": 0.3756169080734253,
2187
+ "step": 1550
2188
+ },
2189
+ {
2190
+ "epoch": 0.9823120656980417,
2191
+ "grad_norm": 7.025808334350586,
2192
+ "learning_rate": 8.56079084301964e-09,
2193
+ "loss": 0.39227705001831054,
2194
+ "step": 1555
2195
+ },
2196
+ {
2197
+ "epoch": 0.98547062539482,
2198
+ "grad_norm": 4.011912822723389,
2199
+ "learning_rate": 5.776886277586436e-09,
2200
+ "loss": 0.3450013637542725,
2201
+ "step": 1560
2202
+ },
2203
+ {
2204
+ "epoch": 0.9886291850915983,
2205
+ "grad_norm": 4.327075958251953,
2206
+ "learning_rate": 3.538470439448105e-09,
2207
+ "loss": 0.37610492706298826,
2208
+ "step": 1565
2209
+ },
2210
+ {
2211
+ "epoch": 0.9917877447883765,
2212
+ "grad_norm": 5.906891822814941,
2213
+ "learning_rate": 1.8457878172023491e-09,
2214
+ "loss": 0.3923530578613281,
2215
+ "step": 1570
2216
+ },
2217
+ {
2218
+ "epoch": 0.9949463044851548,
2219
+ "grad_norm": 13.777594566345215,
2220
+ "learning_rate": 6.990232923148599e-10,
2221
+ "loss": 0.3700537919998169,
2222
+ "step": 1575
2223
+ },
2224
+ {
2225
+ "epoch": 0.998104864181933,
2226
+ "grad_norm": 6.092741966247559,
2227
+ "learning_rate": 9.830211892492004e-11,
2228
+ "loss": 0.38619203567504884,
2229
+ "step": 1580
2230
+ }
2231
+ ],
2232
+ "logging_steps": 5,
2233
+ "max_steps": 1583,
2234
+ "num_input_tokens_seen": 0,
2235
+ "num_train_epochs": 1,
2236
+ "save_steps": 100,
2237
+ "stateful_callbacks": {
2238
+ "TrainerControl": {
2239
+ "args": {
2240
+ "should_epoch_stop": false,
2241
+ "should_evaluate": false,
2242
+ "should_log": false,
2243
+ "should_save": true,
2244
+ "should_training_stop": true
2245
+ },
2246
+ "attributes": {}
2247
+ }
2248
+ },
2249
+ "total_flos": 8.686148578369864e+18,
2250
+ "train_batch_size": 16,
2251
+ "trial_name": null,
2252
+ "trial_params": null
2253
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f87bd940d4ca56af9331289319f9bd0888aaeea836a31004b39d8249ef3683c
3
+ size 9169
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/video_preprocessor_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": null,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "do_sample_frames": true,
12
+ "fps": 2,
13
+ "image_mean": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "image_std": [
19
+ 0.5,
20
+ 0.5,
21
+ 0.5
22
+ ],
23
+ "input_data_format": null,
24
+ "max_frames": 768,
25
+ "merge_size": 2,
26
+ "min_frames": 4,
27
+ "num_frames": null,
28
+ "pad_size": null,
29
+ "patch_size": 16,
30
+ "processor_class": "Qwen3VLProcessor",
31
+ "resample": 3,
32
+ "rescale_factor": 0.00392156862745098,
33
+ "return_metadata": false,
34
+ "size": {
35
+ "longest_edge": 25165824,
36
+ "shortest_edge": 4096
37
+ },
38
+ "temporal_patch_size": 2,
39
+ "video_metadata": null,
40
+ "video_processor_type": "Qwen3VLVideoProcessor"
41
+ }
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
qwen3vl_8b_click100k_fullsft-lr1e-5_gb200/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info("Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info("Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)