diff --git "a/README.md" "b/README.md" new file mode 100644--- /dev/null +++ "b/README.md" @@ -0,0 +1,1528 @@ +--- +tags: +- ColBERT +- PyLate +- sentence-transformers +- sentence-similarity +- feature-extraction +- generated_from_trainer +- dataset_size:640000 +- loss:Distillation +pipeline_tag: sentence-similarity +library_name: PyLate +license: apache-2.0 +language: +- en +metrics: +- MaxSim_accuracy@1 +- MaxSim_accuracy@3 +- MaxSim_accuracy@5 +- MaxSim_accuracy@10 +- MaxSim_precision@1 +- MaxSim_precision@3 +- MaxSim_precision@5 +- MaxSim_precision@10 +- MaxSim_recall@1 +- MaxSim_recall@3 +- MaxSim_recall@5 +- MaxSim_recall@10 +- MaxSim_ndcg@10 +- MaxSim_mrr@10 +- MaxSim_map@100 +model-index: +- name: PyLate + results: + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoClimateFEVER + type: NanoClimateFEVER + metrics: + - type: MaxSim_accuracy@1 + value: 0.36 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.68 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.76 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.88 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.36 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.2866666666666666 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.21999999999999997 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.148 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.18 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.35999999999999993 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.429 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.5536666666666666 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.4511316943880545 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.5352619047619046 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.35707500469760434 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoDBPedia + type: NanoDBPedia + metrics: + - type: MaxSim_accuracy@1 + value: 0.86 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.94 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.94 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.98 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.86 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.7333333333333333 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.66 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.5840000000000001 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.10798996781634018 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.21610834839667603 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.29328648273572205 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.4273378391765384 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.7325830538365519 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.8995238095238095 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.5805986129726132 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoFEVER + type: NanoFEVER + metrics: + - type: MaxSim_accuracy@1 + value: 0.96 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 1.0 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 1.0 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 1.0 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.96 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.3533333333333333 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.21199999999999997 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.10999999999999999 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.8966666666666667 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.9633333333333333 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.9633333333333333 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.98 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.9624259972128165 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.9766666666666666 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.9478155706727135 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoFiQA2018 + type: NanoFiQA2018 + metrics: + - type: MaxSim_accuracy@1 + value: 0.58 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.66 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.72 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.82 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.58 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.32666666666666666 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.24799999999999997 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.14799999999999996 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.35257936507936505 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.47423809523809524 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.5460079365079364 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.6425317460317461 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.5786162417612232 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.643436507936508 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.5234035855771078 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoHotpotQA + type: NanoHotpotQA + metrics: + - type: MaxSim_accuracy@1 + value: 0.98 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 1.0 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 1.0 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 1.0 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.98 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.6 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.3679999999999999 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.18599999999999994 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.49 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.9 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.92 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.93 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.924329868595787 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.99 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.8944956212370004 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoMSMARCO + type: NanoMSMARCO + metrics: + - type: MaxSim_accuracy@1 + value: 0.6 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.68 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.78 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.9 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.6 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.22666666666666668 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.15600000000000003 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.09 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.6 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.68 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.78 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.9 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.7242459443760582 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.671047619047619 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.6766320575975747 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoNFCorpus + type: NanoNFCorpus + metrics: + - type: MaxSim_accuracy@1 + value: 0.58 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.68 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.72 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.76 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.58 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.42666666666666664 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.396 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.316 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.06598420757312619 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.10355307905498773 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.1296680186177352 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.1635498250401139 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.4054849783640007 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.6303888888888889 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.195854964801369 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoNQ + type: NanoNQ + metrics: + - type: MaxSim_accuracy@1 + value: 0.62 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.84 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.88 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.9 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.62 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.28 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.176 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.09599999999999997 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.59 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.78 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.81 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.86 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.7474767067573468 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.7341904761904762 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.7035987374595623 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoQuoraRetrieval + type: NanoQuoraRetrieval + metrics: + - type: MaxSim_accuracy@1 + value: 0.92 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.98 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 1.0 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 1.0 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.92 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.3933333333333333 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.24799999999999997 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.128 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.7973333333333332 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.932 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.9626666666666668 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.9726666666666667 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.9376063901029283 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.9540000000000001 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.9156057922958499 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoSCIDOCS + type: NanoSCIDOCS + metrics: + - type: MaxSim_accuracy@1 + value: 0.48 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.74 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.76 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.9 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.48 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.4066666666666666 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.30400000000000005 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.204 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.10266666666666666 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.25066666666666665 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.3106666666666667 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.41666666666666663 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.41240108229211636 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.6183888888888889 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.3293535579753635 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoArguAna + type: NanoArguAna + metrics: + - type: MaxSim_accuracy@1 + value: 0.24 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.64 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.7 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.9 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.24 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.21333333333333335 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.14 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.08999999999999998 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.24 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.64 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.7 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.9 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.5619950169581177 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.4556587301587301 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.4583679653679654 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoSciFact + type: NanoSciFact + metrics: + - type: MaxSim_accuracy@1 + value: 0.7 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.82 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.88 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.92 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.7 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.2866666666666667 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.19599999999999998 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.10199999999999998 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.675 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.79 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.87 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.91 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.8019869692829787 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.7716666666666667 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.7651960954534442 + name: Maxsim Map@100 + - task: + type: py-late-information-retrieval + name: Py Late Information Retrieval + dataset: + name: NanoTouche2020 + type: NanoTouche2020 + metrics: + - type: MaxSim_accuracy@1 + value: 0.8163265306122449 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.9795918367346939 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.9795918367346939 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.9795918367346939 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.8163265306122449 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.727891156462585 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.6653061224489795 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.5387755102040817 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.05638641704555484 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.1492928448908377 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.2240629902771357 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.3474561127492143 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.6176094809857532 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.8775510204081632 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.4570510040327342 + name: Maxsim Map@100 + - task: + type: nano-beir + name: Nano BEIR + dataset: + name: NanoBEIR mean + type: NanoBEIR_mean + metrics: + - type: MaxSim_accuracy@1 + value: 0.6689481946624803 + name: Maxsim Accuracy@1 + - type: MaxSim_accuracy@3 + value: 0.8184301412872842 + name: Maxsim Accuracy@3 + - type: MaxSim_accuracy@5 + value: 0.855353218210361 + name: Maxsim Accuracy@5 + - type: MaxSim_accuracy@10 + value: 0.9184301412872842 + name: Maxsim Accuracy@10 + - type: MaxSim_precision@1 + value: 0.6689481946624803 + name: Maxsim Precision@1 + - type: MaxSim_precision@3 + value: 0.4047095761381475 + name: Maxsim Precision@3 + - type: MaxSim_precision@5 + value: 0.3068697017268446 + name: Maxsim Precision@5 + - type: MaxSim_precision@10 + value: 0.210828885400314 + name: Maxsim Precision@10 + - type: MaxSim_recall@1 + value: 0.39650820186008107 + name: Maxsim Recall@1 + - type: MaxSim_recall@3 + value: 0.5568609513523536 + name: Maxsim Recall@3 + - type: MaxSim_recall@5 + value: 0.6106686226773229 + name: Maxsim Recall@5 + - type: MaxSim_recall@10 + value: 0.6926058094613547 + name: Maxsim Recall@10 + - type: MaxSim_ndcg@10 + value: 0.6813764173010564 + name: Maxsim Ndcg@10 + - type: MaxSim_mrr@10 + value: 0.7505985522414094 + name: Maxsim Mrr@10 + - type: MaxSim_map@100 + value: 0.6003883515493001 + name: Maxsim Map@100 +--- + +
+
+
+[](https://lighton.ai)
+[](https://www.linkedin.com/company/lighton/)
+[](https://x.com/LightOnIO)
+
+π [Paper](https://arxiv.org/abs/2602.16609) | π [Blog](https://huggingface.co/blog/lightonai/colbert-zero) | π [Collection](https://huggingface.co/collections/lightonai/colbert-zero)
+
+
+
+| Model | +Avg | +FiQA | NFCorpus | TREC-COVID | Touche | ArguAna | Quora | SCIDOCS | SciFact | NQ | ClimateFEVER | HotpotQA | DBPedia | CQADupstack | FEVER | MSMARCO | +
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Baselines | ||||||||||||||||
| ModernBERT-embed-unsupervised | +47.05 | +42.53 | 35.33 | 68.44 | 18.58 | 48.82 | 88.63 | 19.83 | 72.30 | 46.32 | 22.97 | 60.00 | 37.97 | 42.40 | 67.39 | 34.23 | +
| ModernBERT-embed-supervised | +52.89 | +40.59 | 33.40 | 84.15 | 31.91 | 48.96 | 88.85 | 18.59 | 69.63 | 62.15 | 35.67 | 67.11 | 41.50 | 42.08 | 87.35 | 41.47 | +
| GTE-ModernColBERT | +54.67 | +45.28 | 37.93 | 83.59 | 31.23 | 48.51 | 86.61 | 19.06 | 76.34 | 61.80 | 30.62 | 77.32 | 48.03 | 41.00 | 87.44 | 45.32 | +
| gte-modernbert-base | +55.33 | +48.81 | 36.44 | 81.95 | 21.68 | 72.68 | 88.55 | 21.29 | 77.40 | 57.62 | 37.74 | 69.47 | 41.79 | 42.63 | 91.03 | 40.90 | +
| KD from dense supervised | ||||||||||||||||
| ModernColBERT-embed-base-kd-only | +54.09 | +42.51 | 37.01 | 79.52 | 34.58 | 51.75 | 87.67 | 18.15 | 75.04 | 61.45 | 28.31 | 76.70 | 47.54 | 40.68 | 84.82 | 45.57 | +
| Supervised + KD from dense unsupervised | ||||||||||||||||
| ModernColBERT-embed-base-supervised | +50.72 | +40.09 | 35.56 | 71.12 | 25.53 | 44.27 | 86.96 | 18.19 | 73.78 | 58.89 | 32.95 | 71.49 | 43.23 | 42.55 | 70.51 | 45.72 | +
| ModernColBERT-embed-base | +55.12 | +41.50 | 36.51 | 77.46 | 33.77 | 52.45 | 86.26 | 18.66 | 74.90 | 62.24 | 37.27 | 80.07 | 48.27 | 41.60 | 89.71 | 46.17 | +
| ColBERT-Zero | ||||||||||||||||
| Unsupervised | +51.44 | +45.38 | 36.88 | 67.82 | 22.59 | 51.53 | 87.78 | 22.30 | 76.76 | 58.80 | 24.24 | 68.29 | 43.16 | 45.76 | 81.58 | 38.78 | +
| Supervised | +51.81 | +42.45 | 35.60 | 74.72 | 23.83 | 41.81 | 87.19 | 19.85 | 73.71 | 61.95 | 35.01 | 71.37 | 46.20 | 45.16 | 72.61 | 45.68 | +
| Distilled | +55.43 | +42.62 | 37.28 | 78.69 | 36.13 | 53.07 | 85.24 | 19.88 | 76.50 | 61.66 | 35.72 | 79.41 | 47.48 | 41.34 | 90.59 | 45.80 | +
| ColBERT-Zero-noprompts | ||||||||||||||||
| Unsupervised | +51.70 | +45.31 | 34.72 | 73.55 | 23.26 | 52.56 | 88.15 | 22.63 | 76.10 | 59.18 | 24.24 | 66.66 | 42.61 | 45.56 | 81.88 | 39.15 | +
| Supervised | +52.39 | +43.36 | 36.01 | 72.42 | 23.79 | 47.42 | 87.79 | 21.30 | 73.85 | 62.25 | 31.61 | 70.32 | 44.07 | 44.03 | 85.54 | 42.11 | +
| Distilled | +54.61 | +43.14 | 36.60 | 78.60 | 36.36 | 49.49 | 88.05 | 19.13 | 76.42 | 61.73 | 32.70 | 76.99 | 47.69 | 40.21 | 85.97 | 46.01 | +
pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
+
+| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
+|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
+| MaxSim_accuracy@1 | 0.36 | 0.86 | 0.96 | 0.58 | 0.98 | 0.6 | 0.58 | 0.62 | 0.92 | 0.48 | 0.24 | 0.7 | 0.8163 |
+| MaxSim_accuracy@3 | 0.68 | 0.94 | 1.0 | 0.66 | 1.0 | 0.68 | 0.68 | 0.84 | 0.98 | 0.74 | 0.64 | 0.82 | 0.9796 |
+| MaxSim_accuracy@5 | 0.76 | 0.94 | 1.0 | 0.72 | 1.0 | 0.78 | 0.72 | 0.88 | 1.0 | 0.76 | 0.7 | 0.88 | 0.9796 |
+| MaxSim_accuracy@10 | 0.88 | 0.98 | 1.0 | 0.82 | 1.0 | 0.9 | 0.76 | 0.9 | 1.0 | 0.9 | 0.9 | 0.92 | 0.9796 |
+| MaxSim_precision@1 | 0.36 | 0.86 | 0.96 | 0.58 | 0.98 | 0.6 | 0.58 | 0.62 | 0.92 | 0.48 | 0.24 | 0.7 | 0.8163 |
+| MaxSim_precision@3 | 0.2867 | 0.7333 | 0.3533 | 0.3267 | 0.6 | 0.2267 | 0.4267 | 0.28 | 0.3933 | 0.4067 | 0.2133 | 0.2867 | 0.7279 |
+| MaxSim_precision@5 | 0.22 | 0.66 | 0.212 | 0.248 | 0.368 | 0.156 | 0.396 | 0.176 | 0.248 | 0.304 | 0.14 | 0.196 | 0.6653 |
+| MaxSim_precision@10 | 0.148 | 0.584 | 0.11 | 0.148 | 0.186 | 0.09 | 0.316 | 0.096 | 0.128 | 0.204 | 0.09 | 0.102 | 0.5388 |
+| MaxSim_recall@1 | 0.18 | 0.108 | 0.8967 | 0.3526 | 0.49 | 0.6 | 0.066 | 0.59 | 0.7973 | 0.1027 | 0.24 | 0.675 | 0.0564 |
+| MaxSim_recall@3 | 0.36 | 0.2161 | 0.9633 | 0.4742 | 0.9 | 0.68 | 0.1036 | 0.78 | 0.932 | 0.2507 | 0.64 | 0.79 | 0.1493 |
+| MaxSim_recall@5 | 0.429 | 0.2933 | 0.9633 | 0.546 | 0.92 | 0.78 | 0.1297 | 0.81 | 0.9627 | 0.3107 | 0.7 | 0.87 | 0.2241 |
+| MaxSim_recall@10 | 0.5537 | 0.4273 | 0.98 | 0.6425 | 0.93 | 0.9 | 0.1635 | 0.86 | 0.9727 | 0.4167 | 0.9 | 0.91 | 0.3475 |
+| **MaxSim_ndcg@10** | **0.4511** | **0.7326** | **0.9624** | **0.5786** | **0.9243** | **0.7242** | **0.4055** | **0.7475** | **0.9376** | **0.4124** | **0.562** | **0.802** | **0.6176** |
+| MaxSim_mrr@10 | 0.5353 | 0.8995 | 0.9767 | 0.6434 | 0.99 | 0.671 | 0.6304 | 0.7342 | 0.954 | 0.6184 | 0.4557 | 0.7717 | 0.8776 |
+| MaxSim_map@100 | 0.3571 | 0.5806 | 0.9478 | 0.5234 | 0.8945 | 0.6766 | 0.1959 | 0.7036 | 0.9156 | 0.3294 | 0.4584 | 0.7652 | 0.4571 |
+
+#### Nano BEIR
+* Dataset: `NanoBEIR_mean`
+* Evaluated with pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
+
+| Metric | Value |
+|:--------------------|:-----------|
+| MaxSim_accuracy@1 | 0.6689 |
+| MaxSim_accuracy@3 | 0.8184 |
+| MaxSim_accuracy@5 | 0.8554 |
+| MaxSim_accuracy@10 | 0.9184 |
+| MaxSim_precision@1 | 0.6689 |
+| MaxSim_precision@3 | 0.4047 |
+| MaxSim_precision@5 | 0.3069 |
+| MaxSim_precision@10 | 0.2108 |
+| MaxSim_recall@1 | 0.3965 |
+| MaxSim_recall@3 | 0.5569 |
+| MaxSim_recall@5 | 0.6107 |
+| MaxSim_recall@10 | 0.6926 |
+| **MaxSim_ndcg@10** | **0.6814** |
+| MaxSim_mrr@10 | 0.7506 |
+| MaxSim_map@100 | 0.6004 |
+
+
+
+
+
+## Training Details
+
+### Training Dataset
+
+#### train
+
+* Dataset: train
+* Size: 640,000 training samples
+* Columns: query_id, document_ids, and scores
+* Approximate statistics based on the first 1000 samples:
+ | | query_id | document_ids | scores |
+ |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
+ | type | int | list | list |
+ | details | 685613 | [7546874, 1176459, 197677, 2306318, 8541504, ...] | [0.9999999992804947, 0.24845418756716053, 0.7594154013647826, 0.26644182105618575, 0.390668914839766, ...] |
+ | 237784 | [6366584, 4034101, 2325374, 6914618, 6042146, ...] | [0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...] |
+ | 904294 | [448408, 8743975, 49600, 7339401, 2714261, ...] | [0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...] |
+* Loss: pylate.losses.distillation.Distillation
+
+### Training Hyperparameters
+#### Non-Default Hyperparameters
+
+- `eval_strategy`: steps
+- `per_device_train_batch_size`: 4
+- `per_device_eval_batch_size`: 4
+- `gradient_accumulation_steps`: 2
+- `learning_rate`: 1e-05
+- `num_train_epochs`: 1.0
+- `bf16`: True
+- `dataloader_num_workers`: 4
+- `ddp_find_unused_parameters`: False
+
+#### All Hyperparameters
+