Update README.md
Browse files
README.md
CHANGED
|
@@ -16,30 +16,50 @@ from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
|
| 16 |
|
| 17 |
# Load processor and model
|
| 18 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
| 19 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
with torch.no_grad():
|
| 31 |
outputs = model(**inputs)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
true_prob = relevance_score[
|
| 40 |
-
false_prob = relevance_score[
|
| 41 |
|
| 42 |
-
print(f"True probability: {true_prob}, False probability: {false_prob}")
|
| 43 |
```
|
| 44 |
|
| 45 |
This example demonstrates how to use the model to assess the relevance of an image with respect to a query. It outputs the probability that the image is relevant ("True") or not relevant ("False").
|
|
|
|
| 16 |
|
| 17 |
# Load processor and model
|
| 18 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
| 19 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 20 |
+
"lightonai/MonoQwen2-VL-2B-LoRA-Reranker",
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Define query and load image
|
| 24 |
+
query = "Is this your query about a document ?"
|
| 25 |
+
image_path = "your/path/to/image.png"
|
| 26 |
+
image = Image.open(image_path)
|
| 27 |
+
|
| 28 |
+
# Construct the prompt and prepare input
|
| 29 |
+
prompt = (
|
| 30 |
+
"Assert the relevance of the previous image document to the following query, "
|
| 31 |
+
"answer True or False. The query is: {query}"
|
| 32 |
+
).format(query=query)
|
| 33 |
+
|
| 34 |
+
messages = [
|
| 35 |
+
{
|
| 36 |
+
"role": "user",
|
| 37 |
+
"content": [
|
| 38 |
+
{"type": "image", "image": image},
|
| 39 |
+
{"type": "text", "text": prompt},
|
| 40 |
+
],
|
| 41 |
+
}
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
# Apply chat template and tokenize
|
| 45 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 46 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to("cuda:1")
|
| 47 |
+
|
| 48 |
+
# Run inference to obtain logits
|
| 49 |
with torch.no_grad():
|
| 50 |
outputs = model(**inputs)
|
| 51 |
+
logits_for_last_token = outputs.logits[:, -1, :]
|
| 52 |
+
|
| 53 |
+
# Convert tokens and calculate relevance score
|
| 54 |
+
true_token_id = processor.tokenizer.convert_tokens_to_ids("True")
|
| 55 |
+
false_token_id = processor.tokenizer.convert_tokens_to_ids("False")
|
| 56 |
+
relevance_score = torch.softmax(logits_for_last_token[:, [true_token_id, false_token_id]], dim=-1)
|
| 57 |
|
| 58 |
+
# Extract and display probabilities
|
| 59 |
+
true_prob = relevance_score[0, 0].item()
|
| 60 |
+
false_prob = relevance_score[0, 1].item()
|
| 61 |
|
| 62 |
+
print(f"True probability: {true_prob:.4f}, False probability: {false_prob:.4f}")
|
| 63 |
```
|
| 64 |
|
| 65 |
This example demonstrates how to use the model to assess the relevance of an image with respect to a query. It outputs the probability that the image is relevant ("True") or not relevant ("False").
|