---
license: apache-2.0
tags:
- diffusion-single-file
- comfyui
- distillation
- lora
- video
- video genration
base_model:
- Wan-AI/Wan2.1-T2V-14B
- Wan-AI/Wan2.1-I2V-14B-480P
- Wan-AI/Wan2.1-I2V-14B-720P
library_name: diffusers
---
# 🎬 Wan2.1 Distilled Models
### ⚡ High-Performance Video Generation with 4-Step Inference
*Distillation-accelerated versions of Wan2.1 - Dramatically faster while maintaining exceptional quality*

---
[](https://huggingface.co/lightx2v/Wan2.1-Distill-Models)
[](https://github.com/ModelTC/LightX2V)
[](LICENSE)
---
## 🌟 What's Special?
|
### ⚡ Ultra-Fast Generation
- **4-step inference** (vs traditional 50+ steps)
- Up to **2x faster** than ComfyUI
- Real-time video generation capability
|
### 🎯 Flexible Options
- Multiple resolutions (480P/720P)
- Various precision formats (BF16/FP8/INT8)
- I2V and T2V support
|
|
### 💾 Memory Efficient
- FP8/INT8: **~50% size reduction**
- CPU offload support
- Optimized for consumer GPUs
|
### 🔧 Easy Integration
- Compatible with LightX2V framework
- ComfyUI support available
- Simple configuration files
|
---
## 📦 Model Catalog
### 🎥 Model Types
|
#### 🖼️ **Image-to-Video (I2V)**
Transform still images into dynamic videos
- 📺 480P Resolution
- 🎬 720P Resolution
|
#### 📝 **Text-to-Video (T2V)**
Generate videos from text descriptions
- 🚀 14B Parameters
- 🎨 High-quality synthesis
|
### 🎯 Precision Variants
| Precision | Model Identifier | Model Size | Framework | Quality vs Speed |
|:---------:|:-----------------|:----------:|:---------:|:-----------------|
| 🏆 **BF16** | `lightx2v_4step` | ~28-32 GB | LightX2V | ⭐⭐⭐⭐⭐ Highest quality |
| ⚡ **FP8** | `scaled_fp8_e4m3_lightx2v_4step` | ~15-17 GB | LightX2V | ⭐⭐⭐⭐ Excellent balance |
| 🎯 **INT8** | `int8_lightx2v_4step` | ~15-17 GB | LightX2V | ⭐⭐⭐⭐ Fast & efficient |
| 🔷 **FP8 ComfyUI** | `scaled_fp8_e4m3_lightx2v_4step_comfyui` | ~15-17 GB | ComfyUI | ⭐⭐⭐ ComfyUI ready |
### 📝 Naming Convention
```bash
# Pattern: wan2.1_{task}_{resolution}_{precision}.safetensors
# Examples:
wan2.1_i2v_720p_lightx2v_4step.safetensors # 720P I2V - BF16
wan2.1_i2v_720p_scaled_fp8_e4m3_lightx2v_4step.safetensors # 720P I2V - FP8
wan2.1_i2v_480p_int8_lightx2v_4step.safetensors # 480P I2V - INT8
wan2.1_t2v_14b_scaled_fp8_e4m3_lightx2v_4step_comfyui.safetensors # T2V - FP8 ComfyUI
```
> 💡 **Explore all models**: [Browse Full Model Collection →](https://huggingface.co/lightx2v/Wan2.1-Distill-Models/tree/main)
## 🚀 Usage
**LightX2V is a high-performance inference framework optimized for these models, approximately 2x faster than ComfyUI with better quantization accuracy. Highly recommended!**
#### Quick Start
1. Download model (720P I2V FP8 example)
```bash
huggingface-cli download lightx2v/Wan2.1-Distill-Models \
--local-dir ./models/wan2.1_i2v_720p \
--include "wan2.1_i2v_720p_scaled_fp8_e4m3_lightx2v_4step.safetensors"
```
2. Clone LightX2V repository
```bash
git clone https://github.com/ModelTC/LightX2V.git
cd LightX2V
```
3. Install dependencies
```bash
pip install -r requirements.txt
```
Or refer to [Quick Start Documentation](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/getting_started/quickstart.md) to use docker
4. Select and modify configuration file
Choose the appropriate configuration based on your GPU memory:
**For 80GB+ GPU (A100/H100)**
- I2V: [wan_i2v_distill_4step_cfg.json](https://github.com/ModelTC/LightX2V/blob/main/configs/distill/wan_i2v_distill_4step_cfg.json)
- T2V: [wan_t2v_distill_4step_cfg.json](https://github.com/ModelTC/LightX2V/blob/main/configs/distill/wan_t2v_distill_4step_cfg.json)
**For 24GB+ GPU (RTX 4090)**
- I2V: [wan_i2v_distill_4step_cfg_4090.json](https://github.com/ModelTC/LightX2V/blob/main/configs/distill/wan_i2v_distill_4step_cfg_4090.json)
- T2V: [wan_t2v_distill_4step_cfg_4090.json](https://github.com/ModelTC/LightX2V/blob/main/configs/distill/wan_t2v_distill_4step_cfg_4090.json)
5. Run inference
```
cd scripts
bash wan/run_wan_i2v_distill_4step_cfg.sh
```
#### Documentation
- **Quick Start Guide**: [LightX2V Quick Start](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/getting_started/quickstart.md)
- **Complete Usage Guide**: [LightX2V Model Structure Documentation](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/getting_started/model_structure.md)
- **Configuration Guide**: [Configuration Files](https://github.com/ModelTC/LightX2V/tree/main/configs/distill)
- **Quantization Usage**: [Quantization Documentation](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/method_tutorials/quantization.md)
- **Parameter Offload**: [Offload Documentation](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/method_tutorials/offload.md)
#### Performance Advantages
- ⚡ **Fast**: Approximately **2x faster** than ComfyUI
- 🎯 **Optimized**: Deeply optimized for distilled models
- 💾 **Memory Efficient**: Supports CPU offload and other memory optimization techniques
- 🛠️ **Flexible**: Supports multiple quantization formats and configuration options
### Community
- **Issues**: https://github.com/ModelTC/LightX2V/issues
## ⚠️ Important Notes
1. **Additional Components**: These models only contain DIT weights. You also need:
- T5 text encoder
- CLIP vision encoder
- VAE encoder/decoder
- Tokenizers
Refer to [LightX2V Documentation](https://github.com/ModelTC/LightX2V/blob/main/docs/EN/source/getting_started/model_structure.md) for how to organize the complete model directory.
If you find this project helpful, please give us a ⭐ on [GitHub](https://github.com/ModelTC/LightX2V)