Fix YAML metadata - Add proper model card frontmatter
Browse files
README.md
CHANGED
|
@@ -1,3 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# π Token Efficiency Breakthrough: Compact AI Model
|
| 2 |
|
| 3 |
## π Achievement Summary
|
|
@@ -37,8 +57,8 @@ Instead, we must move to information-theoretic optimization approaches like dyna
|
|
| 37 |
from transformers import AutoTokenizer, AutoModel
|
| 38 |
|
| 39 |
# Load our efficient model
|
| 40 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 41 |
-
model = AutoModel.from_pretrained("
|
| 42 |
|
| 43 |
# Your text processing code
|
| 44 |
inputs = tokenizer("Your text here", return_tensors="pt")
|
|
@@ -50,8 +70,8 @@ outputs = model(**inputs)
|
|
| 50 |
from transformers import AutoTokenizer, AutoModel
|
| 51 |
import torch
|
| 52 |
|
| 53 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 54 |
-
model = AutoModel.from_pretrained("
|
| 55 |
|
| 56 |
def process_with_efficiency(text):
|
| 57 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- token-efficiency
|
| 6 |
+
- transformer
|
| 7 |
+
- dynamic-allocation
|
| 8 |
+
- scaling-laws
|
| 9 |
+
- information-theoretic
|
| 10 |
+
- efficiency-breakthrough
|
| 11 |
+
- compact-ai
|
| 12 |
+
- production-ready
|
| 13 |
+
- dynamic-computation
|
| 14 |
+
widget:
|
| 15 |
+
- text: "Hello, world! This is a test of our token-efficient model."
|
| 16 |
+
- text: "Explain quantum computing in simple terms."
|
| 17 |
+
- text: "Write a short story about AI and efficiency."
|
| 18 |
+
- text: "The company's quarterly earnings exceeded expectations by 15%."
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
# π Token Efficiency Breakthrough: Compact AI Model
|
| 22 |
|
| 23 |
## π Achievement Summary
|
|
|
|
| 57 |
from transformers import AutoTokenizer, AutoModel
|
| 58 |
|
| 59 |
# Load our efficient model
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
|
| 61 |
+
model = AutoModel.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
|
| 62 |
|
| 63 |
# Your text processing code
|
| 64 |
inputs = tokenizer("Your text here", return_tensors="pt")
|
|
|
|
| 70 |
from transformers import AutoTokenizer, AutoModel
|
| 71 |
import torch
|
| 72 |
|
| 73 |
+
tokenizer = AutoTokenizer.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
|
| 74 |
+
model = AutoModel.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
|
| 75 |
|
| 76 |
def process_with_efficiency(text):
|
| 77 |
inputs = tokenizer(text, return_tensors="pt")
|