likhonsheikh commited on
Commit
c617f37
Β·
verified Β·
1 Parent(s): e522b21

Fix YAML metadata - Add proper model card frontmatter

Browse files
Files changed (1) hide show
  1. README.md +24 -4
README.md CHANGED
@@ -1,3 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # πŸš€ Token Efficiency Breakthrough: Compact AI Model
2
 
3
  ## πŸ“Š Achievement Summary
@@ -37,8 +57,8 @@ Instead, we must move to information-theoretic optimization approaches like dyna
37
  from transformers import AutoTokenizer, AutoModel
38
 
39
  # Load our efficient model
40
- tokenizer = AutoTokenizer.from_pretrained("compact-ai/token-efficiency-breakthrough")
41
- model = AutoModel.from_pretrained("compact-ai/token-efficiency-breakthrough")
42
 
43
  # Your text processing code
44
  inputs = tokenizer("Your text here", return_tensors="pt")
@@ -50,8 +70,8 @@ outputs = model(**inputs)
50
  from transformers import AutoTokenizer, AutoModel
51
  import torch
52
 
53
- tokenizer = AutoTokenizer.from_pretrained("compact-ai/token-efficiency-breakthrough")
54
- model = AutoModel.from_pretrained("compact-ai/token-efficiency-breakthrough")
55
 
56
  def process_with_efficiency(text):
57
  inputs = tokenizer(text, return_tensors="pt")
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - token-efficiency
6
+ - transformer
7
+ - dynamic-allocation
8
+ - scaling-laws
9
+ - information-theoretic
10
+ - efficiency-breakthrough
11
+ - compact-ai
12
+ - production-ready
13
+ - dynamic-computation
14
+ widget:
15
+ - text: "Hello, world! This is a test of our token-efficient model."
16
+ - text: "Explain quantum computing in simple terms."
17
+ - text: "Write a short story about AI and efficiency."
18
+ - text: "The company's quarterly earnings exceeded expectations by 15%."
19
+ ---
20
+
21
  # πŸš€ Token Efficiency Breakthrough: Compact AI Model
22
 
23
  ## πŸ“Š Achievement Summary
 
57
  from transformers import AutoTokenizer, AutoModel
58
 
59
  # Load our efficient model
60
+ tokenizer = AutoTokenizer.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
61
+ model = AutoModel.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
62
 
63
  # Your text processing code
64
  inputs = tokenizer("Your text here", return_tensors="pt")
 
70
  from transformers import AutoTokenizer, AutoModel
71
  import torch
72
 
73
+ tokenizer = AutoTokenizer.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
74
+ model = AutoModel.from_pretrained("likhonsheikh/token-efficiency-breakthrough")
75
 
76
  def process_with_efficiency(text):
77
  inputs = tokenizer(text, return_tensors="pt")