patrickvonplaten commited on
Commit
5286cce
·
0 Parent(s):

Duplicate from ControlNet-1-1-preview/control_v11p_sd15_seg

Browse files
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ base_model: runwayml/stable-diffusion-v1-5
4
+ tags:
5
+ - art
6
+ - controlnet
7
+ - stable-diffusion
8
+ duplicated_from: ControlNet-1-1-preview/control_v11p_sd15_seg
9
+ ---
10
+
11
+ # Controlnet - v1.1 - *seg Version*
12
+
13
+ **Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet)
14
+ and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel).
15
+
16
+ This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_seg.pth) into `diffusers` format.
17
+ It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
18
+
19
+
20
+ For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet).
21
+
22
+
23
+ ControlNet is a neural network structure to control diffusion models by adding extra conditions.
24
+
25
+ ![img](./sd.png)
26
+
27
+ This checkpoint corresponds to the ControlNet conditioned on **seg images**.
28
+
29
+ ## Model Details
30
+ - **Developed by:** Lvmin Zhang, Maneesh Agrawala
31
+ - **Model type:** Diffusion-based text-to-image generation model
32
+ - **Language(s):** English
33
+ - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
34
+ - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543).
35
+ - **Cite as:**
36
+
37
+ @misc{zhang2023adding,
38
+ title={Adding Conditional Control to Text-to-Image Diffusion Models},
39
+ author={Lvmin Zhang and Maneesh Agrawala},
40
+ year={2023},
41
+ eprint={2302.05543},
42
+ archivePrefix={arXiv},
43
+ primaryClass={cs.CV}
44
+ }
45
+
46
+ ## Introduction
47
+
48
+ Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by
49
+ Lvmin Zhang, Maneesh Agrawala.
50
+
51
+ The abstract reads as follows:
52
+
53
+ *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions.
54
+ The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k).
55
+ Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices.
56
+ Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data.
57
+ We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc.
58
+ This may enrich the methods to control large diffusion models and further facilitate related applications.*
59
+
60
+ ## Example
61
+
62
+ It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint
63
+ has been trained on it.
64
+ Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion.
65
+
66
+ **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below:
67
+
68
+ 1. Let's install `diffusers` and related packages:
69
+
70
+ ```
71
+ $ pip install diffusers transformers accelerate
72
+ ```
73
+
74
+ 2. Let's define a color table we'll need later.
75
+
76
+ ```py
77
+ import numpy as np
78
+
79
+ ada_palette = np.asarray([
80
+ [0, 0, 0],
81
+ [120, 120, 120],
82
+ [180, 120, 120],
83
+ [6, 230, 230],
84
+ [80, 50, 50],
85
+ [4, 200, 3],
86
+ [120, 120, 80],
87
+ [140, 140, 140],
88
+ [204, 5, 255],
89
+ [230, 230, 230],
90
+ [4, 250, 7],
91
+ [224, 5, 255],
92
+ [235, 255, 7],
93
+ [150, 5, 61],
94
+ [120, 120, 70],
95
+ [8, 255, 51],
96
+ [255, 6, 82],
97
+ [143, 255, 140],
98
+ [204, 255, 4],
99
+ [255, 51, 7],
100
+ [204, 70, 3],
101
+ [0, 102, 200],
102
+ [61, 230, 250],
103
+ [255, 6, 51],
104
+ [11, 102, 255],
105
+ [255, 7, 71],
106
+ [255, 9, 224],
107
+ [9, 7, 230],
108
+ [220, 220, 220],
109
+ [255, 9, 92],
110
+ [112, 9, 255],
111
+ [8, 255, 214],
112
+ [7, 255, 224],
113
+ [255, 184, 6],
114
+ [10, 255, 71],
115
+ [255, 41, 10],
116
+ [7, 255, 255],
117
+ [224, 255, 8],
118
+ [102, 8, 255],
119
+ [255, 61, 6],
120
+ [255, 194, 7],
121
+ [255, 122, 8],
122
+ [0, 255, 20],
123
+ [255, 8, 41],
124
+ [255, 5, 153],
125
+ [6, 51, 255],
126
+ [235, 12, 255],
127
+ [160, 150, 20],
128
+ [0, 163, 255],
129
+ [140, 140, 140],
130
+ [250, 10, 15],
131
+ [20, 255, 0],
132
+ [31, 255, 0],
133
+ [255, 31, 0],
134
+ [255, 224, 0],
135
+ [153, 255, 0],
136
+ [0, 0, 255],
137
+ [255, 71, 0],
138
+ [0, 235, 255],
139
+ [0, 173, 255],
140
+ [31, 0, 255],
141
+ [11, 200, 200],
142
+ [255, 82, 0],
143
+ [0, 255, 245],
144
+ [0, 61, 255],
145
+ [0, 255, 112],
146
+ [0, 255, 133],
147
+ [255, 0, 0],
148
+ [255, 163, 0],
149
+ [255, 102, 0],
150
+ [194, 255, 0],
151
+ [0, 143, 255],
152
+ [51, 255, 0],
153
+ [0, 82, 255],
154
+ [0, 255, 41],
155
+ [0, 255, 173],
156
+ [10, 0, 255],
157
+ [173, 255, 0],
158
+ [0, 255, 153],
159
+ [255, 92, 0],
160
+ [255, 0, 255],
161
+ [255, 0, 245],
162
+ [255, 0, 102],
163
+ [255, 173, 0],
164
+ [255, 0, 20],
165
+ [255, 184, 184],
166
+ [0, 31, 255],
167
+ [0, 255, 61],
168
+ [0, 71, 255],
169
+ [255, 0, 204],
170
+ [0, 255, 194],
171
+ [0, 255, 82],
172
+ [0, 10, 255],
173
+ [0, 112, 255],
174
+ [51, 0, 255],
175
+ [0, 194, 255],
176
+ [0, 122, 255],
177
+ [0, 255, 163],
178
+ [255, 153, 0],
179
+ [0, 255, 10],
180
+ [255, 112, 0],
181
+ [143, 255, 0],
182
+ [82, 0, 255],
183
+ [163, 255, 0],
184
+ [255, 235, 0],
185
+ [8, 184, 170],
186
+ [133, 0, 255],
187
+ [0, 255, 92],
188
+ [184, 0, 255],
189
+ [255, 0, 31],
190
+ [0, 184, 255],
191
+ [0, 214, 255],
192
+ [255, 0, 112],
193
+ [92, 255, 0],
194
+ [0, 224, 255],
195
+ [112, 224, 255],
196
+ [70, 184, 160],
197
+ [163, 0, 255],
198
+ [153, 0, 255],
199
+ [71, 255, 0],
200
+ [255, 0, 163],
201
+ [255, 204, 0],
202
+ [255, 0, 143],
203
+ [0, 255, 235],
204
+ [133, 255, 0],
205
+ [255, 0, 235],
206
+ [245, 0, 255],
207
+ [255, 0, 122],
208
+ [255, 245, 0],
209
+ [10, 190, 212],
210
+ [214, 255, 0],
211
+ [0, 204, 255],
212
+ [20, 0, 255],
213
+ [255, 255, 0],
214
+ [0, 153, 255],
215
+ [0, 41, 255],
216
+ [0, 255, 204],
217
+ [41, 0, 255],
218
+ [41, 255, 0],
219
+ [173, 0, 255],
220
+ [0, 245, 255],
221
+ [71, 0, 255],
222
+ [122, 0, 255],
223
+ [0, 255, 184],
224
+ [0, 92, 255],
225
+ [184, 255, 0],
226
+ [0, 133, 255],
227
+ [255, 214, 0],
228
+ [25, 194, 194],
229
+ [102, 255, 0],
230
+ [92, 0, 255],
231
+ ])
232
+ ```
233
+
234
+
235
+ 3. Run code:
236
+
237
+ ```python
238
+ import torch
239
+ import os
240
+ from huggingface_hub import HfApi
241
+ from pathlib import Path
242
+ from diffusers.utils import load_image
243
+ from PIL import Image
244
+ import numpy as np
245
+ from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
246
+
247
+ from diffusers import (
248
+ ControlNetModel,
249
+ StableDiffusionControlNetPipeline,
250
+ UniPCMultistepScheduler,
251
+ )
252
+
253
+ image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
254
+ image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
255
+
256
+ checkpoint = "lllyasviel/control_v11p_sd15_seg"
257
+
258
+ image = load_image(
259
+ "https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/input.png"
260
+ )
261
+
262
+ prompt = "old house in stormy weather with rain and wind"
263
+
264
+ pixel_values = image_processor(image, return_tensors="pt").pixel_values
265
+ with torch.no_grad():
266
+ outputs = image_segmentor(pixel_values)
267
+ seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
268
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
269
+ for label, color in enumerate(ada_palette):
270
+ color_seg[seg == label, :] = color
271
+ color_seg = color_seg.astype(np.uint8)
272
+ control_image = Image.fromarray(color_seg)
273
+
274
+ control_image.save("./images/control.png")
275
+
276
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
277
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
278
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
279
+ )
280
+
281
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
282
+ pipe.enable_model_cpu_offload()
283
+
284
+ generator = torch.manual_seed(0)
285
+ image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0]
286
+
287
+ image.save('images/image_out.png')
288
+
289
+ ```
290
+
291
+ ![bird](./images/input.png)
292
+
293
+ ![bird_canny](./images/control.png)
294
+
295
+ ![bird_canny_out](./images/image_out.png)
296
+
297
+ ## Other released checkpoints v1-1
298
+
299
+ The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
300
+ on a different type of conditioning:
301
+
302
+ | Model Name | Control Image Overview| Control Image Example | Generated Image Example |
303
+ |---|---|---|---|
304
+ TODO
305
+
306
+ ### Training
307
+
308
+ TODO
309
+
310
+ ### Blog post
311
+
312
+ For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet).
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "ControlNetModel",
3
+ "_diffusers_version": "0.16.0.dev0",
4
+ "_name_or_path": "/home/patrick/controlnet_v1_1/control_v11p_sd15_seg",
5
+ "act_fn": "silu",
6
+ "attention_head_dim": 8,
7
+ "block_out_channels": [
8
+ 320,
9
+ 640,
10
+ 1280,
11
+ 1280
12
+ ],
13
+ "class_embed_type": null,
14
+ "conditioning_embedding_out_channels": [
15
+ 16,
16
+ 32,
17
+ 96,
18
+ 256
19
+ ],
20
+ "controlnet_conditioning_channel_order": "rgb",
21
+ "cross_attention_dim": 768,
22
+ "down_block_types": [
23
+ "CrossAttnDownBlock2D",
24
+ "CrossAttnDownBlock2D",
25
+ "CrossAttnDownBlock2D",
26
+ "DownBlock2D"
27
+ ],
28
+ "downsample_padding": 1,
29
+ "flip_sin_to_cos": true,
30
+ "freq_shift": 0,
31
+ "in_channels": 4,
32
+ "layers_per_block": 2,
33
+ "mid_block_scale_factor": 1,
34
+ "norm_eps": 1e-05,
35
+ "norm_num_groups": 32,
36
+ "num_class_embeds": null,
37
+ "only_cross_attention": false,
38
+ "projection_class_embeddings_input_dim": null,
39
+ "resnet_time_scale_shift": "default",
40
+ "upcast_attention": false,
41
+ "use_linear_projection": false
42
+ }
control_net_seg.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
8
+ from PIL import Image
9
+ import numpy as np
10
+
11
+ from diffusers import (
12
+ ControlNetModel,
13
+ StableDiffusionControlNetPipeline,
14
+ UniPCMultistepScheduler,
15
+ )
16
+ import sys
17
+
18
+ image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
19
+ image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
20
+
21
+ image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-seg/resolve/main/images/house.png").convert('RGB')
22
+
23
+ prompt = "old house in stormy weather with rain and wind"
24
+
25
+ pixel_values = image_processor(image, return_tensors="pt").pixel_values
26
+ with torch.no_grad():
27
+ outputs = image_segmentor(pixel_values)
28
+ seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
29
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
30
+ for label, color in enumerate(ada_palette):
31
+ color_seg[seg == label, :] = color
32
+ color_seg = color_seg.astype(np.uint8)
33
+ image = Image.fromarray(color_seg)
34
+
35
+
36
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
37
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
38
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
39
+ )
40
+
41
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
42
+ pipe.enable_model_cpu_offload()
43
+
44
+ generator = torch.manual_seed(0)
45
+ out_image = pipe(prompt, num_inference_steps=30, generator=generator, image=image).images[0]
46
+
47
+ path = os.path.join(Path.home(), "images", "aa.png")
48
+ out_image.save(path)
49
+
50
+ api = HfApi()
51
+
52
+ api.upload_file(
53
+ path_or_fileobj=path,
54
+ path_in_repo=path.split("/")[-1],
55
+ repo_id="patrickvonplaten/images",
56
+ repo_type="dataset",
57
+ )
58
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4397ad13ff43760023ad5f7b13969731e52c0d23cc1c609fcb4b25da2c00be0b
3
+ size 1445254969
diffusion_pytorch_model.fp16.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90dcbc018c19a01dc146a3062227a35142f700031abd5f0a5385447f469cbce2
3
+ size 722698343
diffusion_pytorch_model.fp16.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23809d298edb48bf97ce95c6b8c4a69a749e57bf3838d866fbdc45f8fa11f6f4
3
+ size 722598642
diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68291d493d0d75df67fe931c753c9b204cf3863509d5471b5eb64e5f0f2b4b38
3
+ size 1445157124
images/control.png ADDED
images/image_out.png ADDED
images/input.png ADDED
sd.png ADDED