--- license: apache-2.0 language: en library_name: transformers tags: - deberta - sequence-classification - medicine - telerehabilitation metrics: - name: accuracy type: accuracy value: 0.9986 # test_accuracy - name: macro_f1 type: f1 value: 0.9987 - name: balanced_accuracy type: balanced_accuracy value: 0.9987 - name: auc_micro type: auc value: 0.999997 - name: ap_micro type: average_precision value: 0.99993 --- # **MeDeBERTa** – v2 (July 2025) Fine-tuned **microsoft/deberta-v3-xsmall** on 269 874 Q-A pairs (30 intent labels) for the *MeDeBERTa* telerehabilitation question-classification task. | | Value | |------------------------------------|-------| | **Epochs** | 20 (best @ epoch 17) | | **Batch / Grad. Accum.** | 16 / 4 (eff. 64) | | **Learning rate** | 5 × 10⁻⁵ | | **Best val. accuracy** | **0.99855** | | **Test accuracy** | **0.99859** | | **Macro F1 (test)** | **0.99867** | | **Balanced accuracy (test)** | 0.99868 | | **Micro AUC** | 0.999997 | | **Micro average precision** | 0.99993 | | **Loss (val | test)** | 0.01371 \| 0.01305 | | **Hardware** | RTX 2080 Ti (11 GB) |
Per-class metrics (excerpt) | Label | Precision | Recall | F1 | Support | |-------|-----------|--------|----|---------| | any_code | 1.000 | 1.000 | 1.000 | 980 | | contexts | 0.988 | 0.987 | 0.988 | 923 | | treatment summary | 1.000 | 0.998 | 0.999 | 927 | | … | … | … | … | … | Full table: see `classification_report.json` / `classification_report.csv`.
## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tok = AutoTokenizer.from_pretrained("malakhovks/MeDeBERTa") model = AutoModelForSequenceClassification.from_pretrained("malakhovks/MeDeBERTa") inputs = tok("what are contraindications for TENS?", return_tensors="pt") pred = model(**inputs).logits.argmax(-1).item() print(model.config.id2label[pred]) ``` ## Changelog See [CHANGELOG.md](./CHANGELOG.md) for full version history.