Commit
·
97c3e33
1
Parent(s):
47784f5
update
Browse files
README.md
CHANGED
|
@@ -48,19 +48,19 @@ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", devic
|
|
| 48 |
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
|
| 49 |
|
| 50 |
# Basic sampling
|
| 51 |
-
gen_out = model.generate(**inputs, custom_generate="manueldeprada/
|
| 52 |
|
| 53 |
# With temperature
|
| 54 |
-
gen_out = model.generate(**inputs, custom_generate="manueldeprada/
|
| 55 |
|
| 56 |
# With top-k
|
| 57 |
-
gen_out = model.generate(**inputs, custom_generate="manueldeprada/
|
| 58 |
|
| 59 |
# With top-p (nucleus sampling)
|
| 60 |
-
gen_out = model.generate(**inputs, custom_generate="manueldeprada/
|
| 61 |
|
| 62 |
# Greedy decoding (no sampling)
|
| 63 |
-
gen_out = model.generate(**inputs, custom_generate="manueldeprada/
|
| 64 |
|
| 65 |
# Get detailed output with probabilities
|
| 66 |
gen_out = model.generate(
|
|
|
|
| 48 |
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
|
| 49 |
|
| 50 |
# Basic sampling
|
| 51 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling_with_kvcache_hf_helpers", trust_remote_code=True)
|
| 52 |
|
| 53 |
# With temperature
|
| 54 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling_with_kvcache_hf_helpers", temperature=0.8, trust_remote_code=True)
|
| 55 |
|
| 56 |
# With top-k
|
| 57 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling_with_kvcache_hf_helpers", top_k=50, trust_remote_code=True)
|
| 58 |
|
| 59 |
# With top-p (nucleus sampling)
|
| 60 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling_with_kvcache_hf_helpers", top_p=0.9, trust_remote_code=True)
|
| 61 |
|
| 62 |
# Greedy decoding (no sampling)
|
| 63 |
+
gen_out = model.generate(**inputs, custom_generate="manueldeprada/sampling_with_kvcache_hf_helpers", do_sample=False, trust_remote_code=True)
|
| 64 |
|
| 65 |
# Get detailed output with probabilities
|
| 66 |
gen_out = model.generate(
|