File size: 12,129 Bytes
13e402e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
"""
Create synthetic audio samples for testing fine-tuning and annotation.
This script generates synthetic audio samples with different characteristics
to simulate emotional speech for testing purposes before real datasets are available.
"""
import numpy as np
import soundfile as sf
from pathlib import Path
import logging
from typing import Dict, List
import librosa
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SyntheticAudioGenerator:
"""Generate synthetic audio samples with emotion-like characteristics."""
def __init__(self, sample_rate: int = 16000):
self.sample_rate = sample_rate
def generate_base_tone(self, duration: float, frequency: float) -> np.ndarray:
"""Generate a base tone with given frequency."""
t = np.linspace(0, duration, int(duration * self.sample_rate))
tone = np.sin(2 * np.pi * frequency * t)
return tone
def add_harmonics(self, tone: np.ndarray, frequencies: List[float],
amplitudes: List[float]) -> np.ndarray:
"""Add harmonic frequencies to simulate voice complexity."""
duration = len(tone) / self.sample_rate
t = np.linspace(0, duration, len(tone))
for freq, amp in zip(frequencies, amplitudes):
harmonic = amp * np.sin(2 * np.pi * freq * t)
tone = tone + harmonic
return tone
def apply_envelope(self, audio: np.ndarray, attack: float = 0.1,
decay: float = 0.1, sustain: float = 0.7,
release: float = 0.2) -> np.ndarray:
"""Apply ADSR envelope to audio."""
n_samples = len(audio)
envelope = np.ones(n_samples)
# Attack
attack_samples = int(attack * n_samples)
envelope[:attack_samples] = np.linspace(0, 1, attack_samples)
# Decay
decay_samples = int(decay * n_samples)
decay_end = attack_samples + decay_samples
envelope[attack_samples:decay_end] = np.linspace(1, sustain, decay_samples)
# Sustain (already at sustain level)
sustain_end = n_samples - int(release * n_samples)
envelope[decay_end:sustain_end] = sustain
# Release
envelope[sustain_end:] = np.linspace(sustain, 0, n_samples - sustain_end)
return audio * envelope
def generate_neutral(self, duration: float = 3.0) -> np.ndarray:
"""
Generate neutral emotion audio.
Characteristics: Medium pitch, steady rhythm, minimal variation.
"""
# Base frequency: medium pitch (male: ~120Hz, female: ~220Hz)
base_freq = 150.0
tone = self.generate_base_tone(duration, base_freq)
# Add subtle harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4]
amplitudes = [0.3, 0.15, 0.08]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Steady envelope
tone = self.apply_envelope(tone, attack=0.1, decay=0.05,
sustain=0.8, release=0.15)
# Normalize
tone = tone / np.max(np.abs(tone)) * 0.7
return tone.astype(np.float32)
def generate_happy(self, duration: float = 3.0) -> np.ndarray:
"""
Generate happy emotion audio.
Characteristics: Higher pitch, faster rhythm, more energy.
"""
# Higher pitch
base_freq = 200.0
tone = self.generate_base_tone(duration, base_freq)
# More pronounced harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4, base_freq * 5]
amplitudes = [0.4, 0.25, 0.15, 0.1]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add vibrato (pitch modulation)
t = np.linspace(0, duration, len(tone))
vibrato = 1 + 0.02 * np.sin(2 * np.pi * 5 * t) # 5Hz vibrato
tone = tone * vibrato
# Energetic envelope
tone = self.apply_envelope(tone, attack=0.05, decay=0.05,
sustain=0.9, release=0.1)
# Higher energy
tone = tone / np.max(np.abs(tone)) * 0.85
return tone.astype(np.float32)
def generate_sad(self, duration: float = 3.0) -> np.ndarray:
"""
Generate sad emotion audio.
Characteristics: Lower pitch, slower rhythm, less energy.
"""
# Lower pitch
base_freq = 100.0
tone = self.generate_base_tone(duration, base_freq)
# Fewer harmonics (less bright)
harmonics = [base_freq * 2, base_freq * 3]
amplitudes = [0.25, 0.12]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add tremolo (amplitude modulation)
t = np.linspace(0, duration, len(tone))
tremolo = 1 - 0.05 * np.sin(2 * np.pi * 3 * t) # 3Hz tremolo
tone = tone * tremolo
# Slower envelope
tone = self.apply_envelope(tone, attack=0.15, decay=0.1,
sustain=0.6, release=0.25)
# Lower energy
tone = tone / np.max(np.abs(tone)) * 0.6
return tone.astype(np.float32)
def generate_angry(self, duration: float = 3.0) -> np.ndarray:
"""
Generate angry emotion audio.
Characteristics: Variable pitch, harsh harmonics, high energy.
"""
# Medium-high pitch with variations
base_freq = 180.0
tone = self.generate_base_tone(duration, base_freq)
# Harsh harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4, base_freq * 6]
amplitudes = [0.5, 0.3, 0.2, 0.15]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add roughness (noise)
noise = np.random.randn(len(tone)) * 0.1
tone = tone + noise
# Aggressive envelope
tone = self.apply_envelope(tone, attack=0.02, decay=0.05,
sustain=0.95, release=0.08)
# High energy
tone = tone / np.max(np.abs(tone)) * 0.9
return tone.astype(np.float32)
def generate_fearful(self, duration: float = 3.0) -> np.ndarray:
"""
Generate fearful emotion audio.
Characteristics: Variable pitch, trembling, high frequency.
"""
# Higher pitch with instability
base_freq = 220.0
tone = self.generate_base_tone(duration, base_freq)
# Unstable harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 5]
amplitudes = [0.35, 0.2, 0.15]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add trembling (fast amplitude modulation)
t = np.linspace(0, duration, len(tone))
trembling = 1 - 0.08 * np.sin(2 * np.pi * 8 * t) # 8Hz trembling
tone = tone * trembling
# Unstable envelope
tone = self.apply_envelope(tone, attack=0.08, decay=0.12,
sustain=0.7, release=0.15)
tone = tone / np.max(np.abs(tone)) * 0.75
return tone.astype(np.float32)
def generate_disgusted(self, duration: float = 3.0) -> np.ndarray:
"""
Generate disgusted emotion audio.
Characteristics: Lower pitch, nasal quality, reduced energy.
"""
# Lower-medium pitch
base_freq = 130.0
tone = self.generate_base_tone(duration, base_freq)
# Nasal harmonics (odd harmonics emphasized)
harmonics = [base_freq * 3, base_freq * 5, base_freq * 7]
amplitudes = [0.4, 0.25, 0.15]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add slight roughness
noise = np.random.randn(len(tone)) * 0.05
tone = tone + noise
# Reduced energy envelope
tone = self.apply_envelope(tone, attack=0.12, decay=0.1,
sustain=0.65, release=0.2)
tone = tone / np.max(np.abs(tone)) * 0.65
return tone.astype(np.float32)
def generate_surprised(self, duration: float = 3.0) -> np.ndarray:
"""
Generate surprised emotion audio.
Characteristics: Sudden onset, high pitch, short duration tendency.
"""
# High pitch
base_freq = 250.0
tone = self.generate_base_tone(duration, base_freq)
# Bright harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4]
amplitudes = [0.45, 0.3, 0.2]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Very fast attack envelope
tone = self.apply_envelope(tone, attack=0.01, decay=0.15,
sustain=0.8, release=0.12)
tone = tone / np.max(np.abs(tone)) * 0.8
return tone.astype(np.float32)
def create_test_dataset(output_dir: Path, samples_per_emotion: int = 10):
"""
Create a synthetic test dataset with multiple samples per emotion.
Args:
output_dir: Directory to save audio files
samples_per_emotion: Number of samples to generate per emotion
"""
logger.info("π΅ Creating synthetic test dataset...")
logger.info(f"Output: {output_dir}")
logger.info(f"Samples per emotion: {samples_per_emotion}")
output_dir.mkdir(parents=True, exist_ok=True)
generator = SyntheticAudioGenerator(sample_rate=16000)
emotions = {
"neutral": generator.generate_neutral,
"happy": generator.generate_happy,
"sad": generator.generate_sad,
"angry": generator.generate_angry,
"fearful": generator.generate_fearful,
"disgusted": generator.generate_disgusted,
"surprised": generator.generate_surprised
}
total_files = 0
for emotion, generate_fn in emotions.items():
emotion_dir = output_dir / emotion
emotion_dir.mkdir(exist_ok=True)
logger.info(f"\n Generating {emotion}...")
for i in range(samples_per_emotion):
# Vary duration slightly
duration = 2.5 + np.random.rand() * 1.0 # 2.5 to 3.5 seconds
audio = generate_fn(duration)
filename = emotion_dir / f"{emotion}_{i:03d}.wav"
sf.write(filename, audio, 16000)
total_files += 1
logger.info(f" β {samples_per_emotion} files created")
logger.info(f"\nβ
Total: {total_files} synthetic audio files created")
logger.info(f"π Location: {output_dir}")
# Create metadata file
metadata = {
"dataset_name": "synthetic_emotions_test",
"total_samples": total_files,
"samples_per_emotion": samples_per_emotion,
"emotions": list(emotions.keys()),
"sample_rate": 16000,
"description": "Synthetic audio samples for testing emotion recognition"
}
import json
with open(output_dir / "metadata.json", "w") as f:
json.dump(metadata, f, indent=2)
logger.info(f"π Metadata saved to: {output_dir / 'metadata.json'}")
return output_dir
def main():
import argparse
parser = argparse.ArgumentParser(description="Create synthetic test audio data")
parser.add_argument("--output", type=str, default="data/raw/synthetic/",
help="Output directory")
parser.add_argument("--samples", type=int, default=10,
help="Samples per emotion (default: 10)")
args = parser.parse_args()
output_dir = Path(args.output)
create_test_dataset(output_dir, args.samples)
logger.info("\n" + "="*60)
logger.info("Next steps:")
logger.info("="*60)
logger.info("\n1. Prepare dataset for training:")
logger.info(f"\n python scripts/data/download_ptbr_datasets.py \\")
logger.info(f" --prepare-local {output_dir}")
logger.info("\n2. Fine-tune with synthetic data:")
logger.info("\n python scripts/training/finetune_emotion2vec.py \\")
logger.info(" --dataset data/prepared/synthetic_prepared \\")
logger.info(" --epochs 5 \\")
logger.info(" --device cpu")
logger.info("\nπ‘ Note: This is synthetic data for testing only.")
logger.info(" Use real datasets (VERBO, emoUERJ) for production fine-tuning.")
if __name__ == "__main__":
main()
|