File size: 8,841 Bytes
98938e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
Quick test script for OPTION A ensemble.
Tests:
1. Model loading
2. Single audio annotation
3. Batch processing
4. Performance benchmarking
"""
import sys
import logging
import time
import numpy as np
from pathlib import Path
# Add parent directory to path
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
from ensemble_tts import EnsembleAnnotator
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def test_model_loading():
"""Test 1: Model Loading"""
logger.info("=" * 60)
logger.info("TEST 1: Model Loading")
logger.info("=" * 60)
try:
annotator = EnsembleAnnotator(
mode='quick', # Start with quick mode for faster testing
device='cpu',
enable_events=False # Disable events for faster testing
)
start = time.time()
annotator.load_models()
elapsed = time.time() - start
logger.info(f"β
Models loaded successfully in {elapsed:.2f}s")
return annotator, True
except Exception as e:
logger.error(f"β Model loading failed: {e}")
return None, False
def test_single_annotation(annotator):
"""Test 2: Single Audio Annotation"""
logger.info("\n" + "=" * 60)
logger.info("TEST 2: Single Audio Annotation")
logger.info("=" * 60)
try:
# Generate dummy audio (3 seconds)
audio = np.random.randn(16000 * 3).astype(np.float32)
start = time.time()
result = annotator.annotate(audio, sample_rate=16000)
elapsed = time.time() - start
logger.info(f"\nπ Annotation Result:")
logger.info(f" Emotion: {result['emotion']['label']}")
logger.info(f" Confidence: {result['emotion']['confidence']:.2%}")
logger.info(f" Agreement: {result['emotion']['agreement']:.2%}")
logger.info(f" Votes: {result['emotion']['votes']}")
logger.info(f" Time: {elapsed:.2f}s")
# Validate result structure
assert 'emotion' in result
assert 'label' in result['emotion']
assert 'confidence' in result['emotion']
assert result['emotion']['confidence'] >= 0 and result['emotion']['confidence'] <= 1
logger.info(f"\nβ
Single annotation successful")
return True
except Exception as e:
logger.error(f"β Single annotation failed: {e}")
import traceback
traceback.print_exc()
return False
def test_batch_processing(annotator):
"""Test 3: Batch Processing"""
logger.info("\n" + "=" * 60)
logger.info("TEST 3: Batch Processing")
logger.info("=" * 60)
try:
# Generate 5 dummy audio samples
batch_size = 5
audios = [np.random.randn(16000 * (i + 1)).astype(np.float32) for i in range(batch_size)]
start = time.time()
results = annotator.annotate_batch(audios, sample_rates=[16000] * batch_size)
elapsed = time.time() - start
logger.info(f"\nπ Batch Results:")
for i, result in enumerate(results):
logger.info(f" Sample {i+1}: {result['emotion']['label']} ({result['emotion']['confidence']:.2%})")
logger.info(f"\n Total time: {elapsed:.2f}s")
logger.info(f" Average time per sample: {elapsed/batch_size:.2f}s")
# Validate
assert len(results) == batch_size
logger.info(f"\nβ
Batch processing successful")
return True
except Exception as e:
logger.error(f"β Batch processing failed: {e}")
import traceback
traceback.print_exc()
return False
def test_balanced_mode():
"""Test 4: Balanced Mode (OPTION A)"""
logger.info("\n" + "=" * 60)
logger.info("TEST 4: Balanced Mode (OPTION A)")
logger.info("=" * 60)
try:
annotator_balanced = EnsembleAnnotator(
mode='balanced', # 3 models
device='cpu',
enable_events=False
)
start = time.time()
annotator_balanced.load_models()
load_time = time.time() - start
logger.info(f" Load time: {load_time:.2f}s")
# Test annotation
audio = np.random.randn(16000 * 3).astype(np.float32)
start = time.time()
result = annotator_balanced.annotate(audio, sample_rate=16000)
annotate_time = time.time() - start
logger.info(f"\nπ Balanced Mode Result:")
logger.info(f" Emotion: {result['emotion']['label']}")
logger.info(f" Confidence: {result['emotion']['confidence']:.2%}")
logger.info(f" Agreement: {result['emotion']['agreement']:.2%}")
logger.info(f" Number of predictions: {len(result['emotion']['predictions'])}")
logger.info(f" Annotation time: {annotate_time:.2f}s")
# Should have 3 model predictions (OPTION A)
assert len(result['emotion']['predictions']) == 3, \
f"Expected 3 predictions, got {len(result['emotion']['predictions'])}"
logger.info(f"\nβ
Balanced mode (OPTION A) successful")
return True
except Exception as e:
logger.error(f"β Balanced mode failed: {e}")
import traceback
traceback.print_exc()
return False
def benchmark_modes():
"""Test 5: Benchmark All Modes"""
logger.info("\n" + "=" * 60)
logger.info("TEST 5: Performance Benchmark")
logger.info("=" * 60)
modes = ['quick', 'balanced']
audio = np.random.randn(16000 * 3).astype(np.float32)
results = {}
for mode in modes:
logger.info(f"\nπ Testing {mode.upper()} mode...")
try:
annotator = EnsembleAnnotator(
mode=mode,
device='cpu',
enable_events=False
)
# Load time
start = time.time()
annotator.load_models()
load_time = time.time() - start
# Annotation time (average of 3 runs)
times = []
for _ in range(3):
start = time.time()
result = annotator.annotate(audio, sample_rate=16000)
times.append(time.time() - start)
avg_time = np.mean(times)
results[mode] = {
'load_time': load_time,
'avg_annotation_time': avg_time,
'num_models': len(result['emotion']['predictions'])
}
logger.info(f" Load time: {load_time:.2f}s")
logger.info(f" Avg annotation time: {avg_time:.2f}s")
logger.info(f" Models: {results[mode]['num_models']}")
except Exception as e:
logger.error(f" β {mode} mode failed: {e}")
results[mode] = {'error': str(e)}
# Summary
logger.info("\n" + "=" * 60)
logger.info("BENCHMARK SUMMARY")
logger.info("=" * 60)
for mode, metrics in results.items():
if 'error' not in metrics:
logger.info(f"\n{mode.upper()} MODE:")
logger.info(f" Models: {metrics['num_models']}")
logger.info(f" Load: {metrics['load_time']:.2f}s")
logger.info(f" Annotation: {metrics['avg_annotation_time']:.2f}s/sample")
return True
def main():
"""Run all tests"""
logger.info("\n" + "=" * 60)
logger.info("ENSEMBLE TTS ANNOTATION - QUICK TEST")
logger.info("OPTION A - Balanced Mode (3 models)")
logger.info("=" * 60)
results = {
'model_loading': False,
'single_annotation': False,
'batch_processing': False,
'balanced_mode': False,
'benchmark': False
}
# Test 1: Model Loading
annotator, success = test_model_loading()
results['model_loading'] = success
if not success:
logger.error("\nβ Model loading failed. Cannot continue tests.")
return False
# Test 2: Single Annotation
results['single_annotation'] = test_single_annotation(annotator)
# Test 3: Batch Processing
results['batch_processing'] = test_batch_processing(annotator)
# Test 4: Balanced Mode
results['balanced_mode'] = test_balanced_mode()
# Test 5: Benchmark
results['benchmark'] = benchmark_modes()
# Summary
logger.info("\n" + "=" * 60)
logger.info("TEST SUMMARY")
logger.info("=" * 60)
for test_name, success in results.items():
status = "β
PASS" if success else "β FAIL"
logger.info(f" {test_name}: {status}")
all_passed = all(results.values())
if all_passed:
logger.info("\nπ ALL TESTS PASSED!")
logger.info("\nSystem is ready for production use.")
else:
logger.error("\nβ SOME TESTS FAILED")
logger.error("\nPlease check the logs above for details.")
logger.info("\n" + "=" * 60)
return all_passed
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)
|