File size: 12,405 Bytes
edb9bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
"""
Fine-tune emotion2vec+ on Portuguese BR emotion datasets (VERBO + emoUERJ).
This script implements Option A from academic research:
- Fine-tune emotion2vec+ (SOTA base model)
- Train on VERBO (1,167 samples) + emoUERJ (377 samples)
- Use data augmentation to improve generalization
- Expected improvement: +5-10% accuracy on PT-BR data
"""
import torch
import numpy as np
from transformers import (
Wav2Vec2Processor,
Wav2Vec2ForSequenceClassification,
TrainingArguments,
Trainer
)
from datasets import load_dataset, concatenate_datasets, Audio
import logging
from pathlib import Path
import argparse
from typing import Dict, List, Any
import librosa
from dataclasses import dataclass
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Emotion label mapping
EMOTION_LABELS = {
"neutral": 0,
"happy": 1,
"sad": 2,
"angry": 3,
"fearful": 4,
"disgusted": 5,
"surprised": 6
}
LABEL_TO_ID = EMOTION_LABELS
ID_TO_LABEL = {v: k for k, v in EMOTION_LABELS.items()}
class AudioAugmenter:
"""Data augmentation for audio to improve model robustness."""
@staticmethod
def time_stretch(audio: np.ndarray, rate: float = 1.0) -> np.ndarray:
"""Time stretching (slower/faster)."""
return librosa.effects.time_stretch(audio, rate=rate)
@staticmethod
def pitch_shift(audio: np.ndarray, sr: int, n_steps: float = 0.0) -> np.ndarray:
"""Pitch shifting."""
return librosa.effects.pitch_shift(audio, sr=sr, n_steps=n_steps)
@staticmethod
def add_noise(audio: np.ndarray, noise_factor: float = 0.005) -> np.ndarray:
"""Add white noise."""
noise = np.random.randn(len(audio))
return audio + noise_factor * noise
@staticmethod
def augment(audio: np.ndarray, sr: int, augment_type: str = None) -> np.ndarray:
"""Apply random augmentation."""
if augment_type == 'time_stretch':
rate = np.random.uniform(0.9, 1.1)
return AudioAugmenter.time_stretch(audio, rate)
elif augment_type == 'pitch_shift':
n_steps = np.random.uniform(-2, 2)
return AudioAugmenter.pitch_shift(audio, sr, n_steps)
elif augment_type == 'noise':
return AudioAugmenter.add_noise(audio)
else:
return audio
def load_verbo_dataset():
"""
Load VERBO dataset (1,167 samples, 7 emotions).
VERBO is a Brazilian Portuguese emotional speech corpus.
Paper: "VERBO: A Corpus for Emotion Recognition in Brazilian Portuguese"
Note: This dataset may need to be manually downloaded and prepared.
"""
logger.info("Loading VERBO dataset...")
try:
# Try loading from HuggingFace if available
dataset = load_dataset("VERBO/emotion", split="train")
logger.info(f"โ
VERBO loaded: {len(dataset)} samples")
return dataset
except:
logger.warning("โ ๏ธ VERBO not available on HuggingFace")
logger.info("Please download VERBO manually from: http://www02.smt.ufrj.br/~verbo/")
logger.info("Or contact dataset authors for access")
return None
def load_emouej_dataset():
"""
Load emoUERJ dataset (377 samples, 4 emotions).
emoUERJ is a Brazilian Portuguese emotional speech dataset.
Paper: "emoUERJ: A Deep Learning-Based Emotion Classifier for Brazilian Portuguese"
Note: This dataset may need to be manually downloaded and prepared.
"""
logger.info("Loading emoUERJ dataset...")
try:
# Try loading from HuggingFace if available
dataset = load_dataset("emoUERJ/emotion", split="train")
logger.info(f"โ
emoUERJ loaded: {len(dataset)} samples")
return dataset
except:
logger.warning("โ ๏ธ emoUERJ not available on HuggingFace")
logger.info("Please download emoUERJ manually or contact dataset authors")
return None
def normalize_emotion_labels(dataset, emotion_field: str = "emotion"):
"""
Normalize emotion labels to standard 7-class format.
Maps dataset-specific labels to: neutral, happy, sad, angry, fearful, disgusted, surprised
"""
def map_label(example):
emotion = example[emotion_field].lower()
# Common mappings
emotion_map = {
"neutro": "neutral",
"neutral": "neutral",
"alegria": "happy",
"feliz": "happy",
"happy": "happy",
"tristeza": "sad",
"triste": "sad",
"sad": "sad",
"raiva": "angry",
"angry": "angry",
"medo": "fearful",
"fearful": "fearful",
"nojo": "disgusted",
"disgusted": "disgusted",
"surpresa": "surprised",
"surprised": "surprised"
}
normalized = emotion_map.get(emotion, "neutral")
example["label"] = LABEL_TO_ID[normalized]
example["emotion_text"] = normalized
return example
return dataset.map(map_label)
def prepare_dataset(examples, processor, augment: bool = False):
"""Prepare dataset for training."""
audio_arrays = examples["audio"]
processed = []
for audio in audio_arrays:
array = audio["array"]
sr = audio["sampling_rate"]
# Resample to 16kHz if needed
if sr != 16000:
array = librosa.resample(array, orig_sr=sr, target_sr=16000)
# Data augmentation (during training only)
if augment and np.random.random() < 0.5:
aug_type = np.random.choice(['time_stretch', 'pitch_shift', 'noise'])
array = AudioAugmenter.augment(array, 16000, aug_type)
processed.append(array)
# Process with Wav2Vec2 processor
inputs = processor(
processed,
sampling_rate=16000,
return_tensors="pt",
padding=True,
max_length=16000 * 10, # Max 10 seconds
truncation=True
)
inputs["labels"] = examples["label"]
return inputs
@dataclass
class DataCollatorWithPadding:
"""Custom data collator for audio data."""
processor: Wav2Vec2Processor
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
# Separate features and labels
input_values = [{"input_values": feature["input_values"]} for feature in features]
labels = [feature["labels"] for feature in features]
# Pad input values
batch = self.processor.pad(
input_values,
padding=True,
return_tensors="pt"
)
batch["labels"] = torch.tensor(labels)
return batch
def compute_metrics(eval_pred):
"""Compute evaluation metrics."""
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
accuracy = (predictions == labels).mean()
# Per-class accuracy
per_class_acc = {}
for label_id, label_name in ID_TO_LABEL.items():
mask = labels == label_id
if mask.sum() > 0:
per_class_acc[label_name] = (predictions[mask] == labels[mask]).mean()
return {
"accuracy": accuracy,
**{f"accuracy_{k}": v for k, v in per_class_acc.items()}
}
def main():
parser = argparse.ArgumentParser(description="Fine-tune emotion2vec on PT-BR datasets")
parser.add_argument("--base-model", type=str, default="emotion2vec/emotion2vec_plus_large",
help="Base model to fine-tune")
parser.add_argument("--output-dir", type=str, default="models/emotion/emotion2vec_finetuned_ptbr",
help="Output directory for fine-tuned model")
parser.add_argument("--epochs", type=int, default=20,
help="Number of training epochs")
parser.add_argument("--batch-size", type=int, default=8,
help="Training batch size")
parser.add_argument("--learning-rate", type=float, default=3e-5,
help="Learning rate")
parser.add_argument("--augment", action="store_true",
help="Use data augmentation")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device to use (cuda/cpu)")
args = parser.parse_args()
logger.info("=" * 60)
logger.info("Fine-tuning emotion2vec on Portuguese BR datasets")
logger.info("=" * 60)
logger.info(f"Base model: {args.base_model}")
logger.info(f"Device: {args.device}")
logger.info(f"Epochs: {args.epochs}")
logger.info(f"Batch size: {args.batch_size}")
logger.info(f"Data augmentation: {args.augment}")
# Load datasets
verbo = load_verbo_dataset()
emouej = load_emouej_dataset()
if verbo is None and emouej is None:
logger.error("โ No datasets available. Please download VERBO and/or emoUERJ manually.")
logger.info("\nDataset sources:")
logger.info("- VERBO: http://www02.smt.ufrj.br/~verbo/")
logger.info("- emoUERJ: Contact authors or check university repository")
return
# Combine datasets
datasets = []
if verbo is not None:
verbo = normalize_emotion_labels(verbo)
datasets.append(verbo)
if emouej is not None:
emouej = normalize_emotion_labels(emouej)
datasets.append(emouej)
combined_dataset = concatenate_datasets(datasets) if len(datasets) > 1 else datasets[0]
# Cast audio column
combined_dataset = combined_dataset.cast_column("audio", Audio(sampling_rate=16000))
# Split into train/validation
split_dataset = combined_dataset.train_test_split(test_size=0.15, seed=42)
train_dataset = split_dataset["train"]
val_dataset = split_dataset["test"]
logger.info(f"\n๐ Dataset statistics:")
logger.info(f" Training samples: {len(train_dataset)}")
logger.info(f" Validation samples: {len(val_dataset)}")
# Load processor and model
logger.info(f"\n๐ Loading base model: {args.base_model}...")
processor = Wav2Vec2Processor.from_pretrained(args.base_model)
model = Wav2Vec2ForSequenceClassification.from_pretrained(
args.base_model,
num_labels=len(EMOTION_LABELS),
id2label=ID_TO_LABEL,
label2id=LABEL_TO_ID
)
# Prepare datasets
logger.info("\n๐ Preprocessing datasets...")
train_dataset = train_dataset.map(
lambda x: prepare_dataset(x, processor, augment=args.augment),
batched=True,
remove_columns=train_dataset.column_names
)
val_dataset = val_dataset.map(
lambda x: prepare_dataset(x, processor, augment=False),
batched=True,
remove_columns=val_dataset.column_names
)
# Training arguments
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
training_args = TrainingArguments(
output_dir=str(output_dir),
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=args.learning_rate,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
num_train_epochs=args.epochs,
warmup_ratio=0.1,
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
push_to_hub=False,
save_total_limit=2,
fp16=args.device == "cuda",
)
# Data collator
data_collator = DataCollatorWithPadding(processor=processor)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Train
logger.info("\n๐ Starting fine-tuning...")
trainer.train()
# Evaluate
logger.info("\n๐ Final evaluation...")
metrics = trainer.evaluate()
logger.info(f"Validation accuracy: {metrics['eval_accuracy']:.4f}")
# Save model
logger.info(f"\n๐พ Saving fine-tuned model to {output_dir}...")
trainer.save_model(str(output_dir))
processor.save_pretrained(str(output_dir))
logger.info("\nโ
Fine-tuning complete!")
logger.info(f"Model saved to: {output_dir}")
logger.info("\nTo use this model in the ensemble:")
logger.info(f" Emotion2VecModel(model_name='{args.output_dir}', ...)")
if __name__ == "__main__":
main()
|