Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
base_model: MiniMaxAI/MiniMax-M2.5
|
| 4 |
+
tags:
|
| 5 |
+
- gguf
|
| 6 |
+
- llama.cpp
|
| 7 |
+
- quantized
|
| 8 |
+
- moe
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# MiniMax-M2.5 GGUF
|
| 12 |
+
|
| 13 |
+
GGUF quantizations of [MiniMaxAI/MiniMax-M2.5](https://huggingface.co/MiniMaxAI/MiniMax-M2.5), created with [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
| 14 |
+
|
| 15 |
+
## Model Details
|
| 16 |
+
|
| 17 |
+
| Property | Value |
|
| 18 |
+
|----------|-------|
|
| 19 |
+
| **Base model** | MiniMaxAI/MiniMax-M2.5 |
|
| 20 |
+
| **Architecture** | Mixture of Experts (MoE) |
|
| 21 |
+
| **Total parameters** | 230B |
|
| 22 |
+
| **Active parameters** | 10B per token |
|
| 23 |
+
| **Layers** | 62 |
|
| 24 |
+
| **Total experts** | 256 |
|
| 25 |
+
| **Active experts per token** | 8 |
|
| 26 |
+
| **Source precision** | FP8 (`float8_e4m3fn`) |
|
| 27 |
+
|
| 28 |
+
## Available Quantizations
|
| 29 |
+
|
| 30 |
+
| Quantization | Size | Description |
|
| 31 |
+
|-------------|------|-------------|
|
| 32 |
+
| Q8_0 | ~227 GB | 8-bit quantization, highest quality |
|
| 33 |
+
| Q4_K_M | — | 4-bit K-quant (medium), good balance of quality and size |
|
| 34 |
+
| IQ3_S | — | 3-bit importance quantization (small), compact |
|
| 35 |
+
| Q2_K | — | 2-bit K-quant, smallest size |
|
| 36 |
+
|
| 37 |
+
## Usage
|
| 38 |
+
|
| 39 |
+
These GGUFs can be used with [llama.cpp](https://github.com/ggerganov/llama.cpp) and compatible frontends.
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
# Example with llama-cli
|
| 43 |
+
llama-cli -m MiniMax-M2.5-Q4_K_M.gguf -p "Hello" -n 128
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Notes
|
| 47 |
+
|
| 48 |
+
- The source model uses FP8 (`float8_e4m3fn`) precision, so Q8_0 is effectively lossless relative to the source weights.
|
| 49 |
+
- This is a large MoE model. Even the smallest quant (Q2_K) requires significant memory due to the number of experts.
|
| 50 |
+
- Quantized from the official [MiniMaxAI/MiniMax-M2.5](https://huggingface.co/MiniMaxAI/MiniMax-M2.5) weights.
|