|
|
from sentence_transformers import SentenceTransformer
|
|
|
import torch
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
words = ["apple", "banana", "car"]
|
|
|
|
|
|
|
|
|
st_model = SentenceTransformer("google/embeddinggemma-300m-qat-q4_0-unquantized")
|
|
|
st_model = st_model.to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
pt_embeddings = st_model.encode(words, convert_to_numpy=True, device="cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
from onnx_gemma3_pipeline import onnx_st
|
|
|
from transformers import AutoTokenizer
|
|
|
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
|
|
|
|
|
|
|
|
def basic_mean_pooling(words):
|
|
|
tokenizer = AutoTokenizer.from_pretrained("./embeddinggemma-300m")
|
|
|
model = ORTModelForFeatureExtraction.from_pretrained("./embeddinggemma-300m")
|
|
|
embeddings = []
|
|
|
for word in words:
|
|
|
inputs = tokenizer(word, return_tensors="pt")
|
|
|
input_ids = inputs['input_ids']
|
|
|
sequence_length = input_ids.shape[1]
|
|
|
position_ids = np.arange(sequence_length)[None, :]
|
|
|
position_ids = np.tile(position_ids, (input_ids.shape[0], 1))
|
|
|
inputs['position_ids'] = torch.tensor(position_ids, dtype=torch.long)
|
|
|
outputs = model(**inputs)
|
|
|
last_hidden = outputs.last_hidden_state
|
|
|
attention_mask = inputs['attention_mask']
|
|
|
from sentence_transformers import models
|
|
|
pooling = models.Pooling(word_embedding_dimension=last_hidden.shape[-1], pooling_mode_mean_tokens=True)
|
|
|
features = {'token_embeddings': last_hidden, 'attention_mask': attention_mask}
|
|
|
pooled = pooling(features)['sentence_embedding']
|
|
|
embeddings.append(pooled[0].detach().cpu().numpy())
|
|
|
return np.stack(embeddings)
|
|
|
from transformers import AutoTokenizer
|
|
|
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
|
|
onnx_embeddings = onnx_st.encode(words)
|
|
|
|
|
|
|
|
|
def cosine_similarity(a, b):
|
|
|
a = a.flatten()
|
|
|
b = b.flatten()
|
|
|
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
|
|
|
|
|
print("Safetensor Cosine similarities:")
|
|
|
print(f"apple vs banana: {cosine_similarity(pt_embeddings[0], pt_embeddings[1]):.4f}")
|
|
|
print(f"apple vs car: {cosine_similarity(pt_embeddings[0], pt_embeddings[2]):.4f}")
|
|
|
print(f"banana vs car: {cosine_similarity(pt_embeddings[1], pt_embeddings[2]):.4f}")
|
|
|
|
|
|
print("\nONNX Cosine similarities:")
|
|
|
print(f"apple vs banana: {cosine_similarity(onnx_embeddings[0], onnx_embeddings[1]):.4f}")
|
|
|
print(f"apple vs car: {cosine_similarity(onnx_embeddings[0], onnx_embeddings[2]):.4f}")
|
|
|
print(f"banana vs car: {cosine_similarity(onnx_embeddings[1], onnx_embeddings[2]):.4f}")
|
|
|
|
|
|
|
|
|
basic_embeddings = basic_mean_pooling(words)
|
|
|
print("\nBasic ONNX (mean pooling only) Cosine similarities:")
|
|
|
print(f"apple vs banana: {cosine_similarity(basic_embeddings[0], basic_embeddings[1]):.4f}")
|
|
|
print(f"apple vs car: {cosine_similarity(basic_embeddings[0], basic_embeddings[2]):.4f}")
|
|
|
print(f"banana vs car: {cosine_similarity(basic_embeddings[1], basic_embeddings[2]):.4f}")
|
|
|
|