Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,109 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
Model weight for Fast Style Transfer
|
| 5 |
+
|
| 6 |
+
```
|
| 7 |
+
|
| 8 |
+
class TransformerNetwork(nn.Module):
|
| 9 |
+
"""Feedforward Transformation Network without Tanh
|
| 10 |
+
reference: https://arxiv.org/abs/1603.08155
|
| 11 |
+
exact architecture: https://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf
|
| 12 |
+
"""
|
| 13 |
+
def __init__(self, tanh_multiplier=None):
|
| 14 |
+
super(TransformerNetwork, self).__init__()
|
| 15 |
+
self.ConvBlock = nn.Sequential(
|
| 16 |
+
ConvLayer(3, 32, 9, 1),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
ConvLayer(32, 64, 3, 2),
|
| 19 |
+
nn.ReLU(),
|
| 20 |
+
ConvLayer(64, 128, 3, 2),
|
| 21 |
+
nn.ReLU()
|
| 22 |
+
)
|
| 23 |
+
self.ResidualBlock = nn.Sequential(
|
| 24 |
+
ResidualLayer(128, 3),
|
| 25 |
+
ResidualLayer(128, 3),
|
| 26 |
+
ResidualLayer(128, 3),
|
| 27 |
+
ResidualLayer(128, 3),
|
| 28 |
+
ResidualLayer(128, 3)
|
| 29 |
+
)
|
| 30 |
+
self.DeconvBlock = nn.Sequential(
|
| 31 |
+
DeconvLayer(128, 64, 3, 2, 1),
|
| 32 |
+
nn.ReLU(),
|
| 33 |
+
DeconvLayer(64, 32, 3, 2, 1),
|
| 34 |
+
nn.ReLU(),
|
| 35 |
+
ConvLayer(32, 3, 9, 1, norm="None")
|
| 36 |
+
)
|
| 37 |
+
self.tanh_multiplier = tanh_multiplier
|
| 38 |
+
|
| 39 |
+
def forward(self, x):
|
| 40 |
+
x = self.ConvBlock(x)
|
| 41 |
+
x = self.ResidualBlock(x)
|
| 42 |
+
x = self.DeconvBlock(x)
|
| 43 |
+
if isinstance(self.tanh_multiplier, int):
|
| 44 |
+
x = self.tanh_multiplier * F.tanh(x)
|
| 45 |
+
return x
|
| 46 |
+
|
| 47 |
+
class ConvLayer(nn.Module):
|
| 48 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
|
| 49 |
+
super(ConvLayer, self).__init__()
|
| 50 |
+
# Padding Layers
|
| 51 |
+
padding_size = kernel_size // 2
|
| 52 |
+
self.pad = nn.ReflectionPad2d(padding_size)
|
| 53 |
+
|
| 54 |
+
# Convolution Layer
|
| 55 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
| 56 |
+
|
| 57 |
+
# Normalization Layers
|
| 58 |
+
if norm == "instance":
|
| 59 |
+
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
|
| 60 |
+
elif norm == "batch":
|
| 61 |
+
self.norm = nn.BatchNorm2d(out_channels, affine=True)
|
| 62 |
+
else:
|
| 63 |
+
self.norm = nn.Identity()
|
| 64 |
+
|
| 65 |
+
def forward(self, x):
|
| 66 |
+
x = self.pad(x)
|
| 67 |
+
x = self.conv(x)
|
| 68 |
+
x = self.norm(x)
|
| 69 |
+
return x
|
| 70 |
+
|
| 71 |
+
class ResidualLayer(nn.Module):
|
| 72 |
+
"""
|
| 73 |
+
Deep Residual Learning for Image Recognition
|
| 74 |
+
https://arxiv.org/abs/1512.03385
|
| 75 |
+
"""
|
| 76 |
+
def __init__(self, channels=128, kernel_size=3):
|
| 77 |
+
super(ResidualLayer, self).__init__()
|
| 78 |
+
self.conv1 = ConvLayer(channels, channels, kernel_size, stride=1)
|
| 79 |
+
self.relu = nn.ReLU()
|
| 80 |
+
self.conv2 = ConvLayer(channels, channels, kernel_size, stride=1)
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
identity = x # preserve residual
|
| 84 |
+
out = self.relu(self.conv1(x)) # 1st conv layer + activation
|
| 85 |
+
out = self.conv2(out) # 2nd conv layer
|
| 86 |
+
out = out + identity # add residual
|
| 87 |
+
return out
|
| 88 |
+
|
| 89 |
+
class DeconvLayer(nn.Module):
|
| 90 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"):
|
| 91 |
+
super(DeconvLayer, self).__init__()
|
| 92 |
+
|
| 93 |
+
# Transposed Convolution
|
| 94 |
+
padding_size = kernel_size // 2
|
| 95 |
+
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding)
|
| 96 |
+
|
| 97 |
+
# Normalization Layers
|
| 98 |
+
if norm == "instance":
|
| 99 |
+
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
|
| 100 |
+
elif norm == "batch":
|
| 101 |
+
self.norm = nn.BatchNorm2d(out_channels, affine=True)
|
| 102 |
+
else:
|
| 103 |
+
self.norm = nn.Identity()
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
x = self.conv_transpose(x)
|
| 107 |
+
out = self.norm(x)
|
| 108 |
+
return out
|
| 109 |
+
```
|