Update custom model files, README, and requirements
Browse files- README.md +222 -14
- asr_modeling.py +37 -14
- asr_pipeline.py +12 -0
README.md
CHANGED
|
@@ -14,21 +14,177 @@ tags:
|
|
| 14 |
- audio
|
| 15 |
- qwen
|
| 16 |
- glm-asr
|
|
|
|
| 17 |
---
|
| 18 |
|
| 19 |
# Tiny Audio
|
| 20 |
|
| 21 |
A speech recognition model trained in 24 hours on a single GPU for ~$12. Built with [Tiny Audio](https://github.com/alexkroman/tiny-audio)—a minimal, hackable ASR framework.
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
## Architecture
|
| 24 |
|
| 25 |
```
|
| 26 |
Audio (16kHz) → GLM-ASR Encoder (frozen) → MLP Projector (trained) → Qwen3 (frozen) → Text
|
| 27 |
```
|
| 28 |
|
| 29 |
-
Only the projector is trained (~12M params). The encoder and decoder remain frozen.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
| | |
|
| 34 |
|---|---|
|
|
@@ -36,24 +192,76 @@ Only the projector is trained (~12M params). The encoder and decoder remain froz
|
|
| 36 |
| **Hardware** | Single NVIDIA A40 |
|
| 37 |
| **Time** | ~24 hours |
|
| 38 |
| **Cost** | ~$12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
##
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
```
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
## Links
|
| 57 |
|
| 58 |
-
- [
|
| 59 |
-
- [Free 3.5-hour
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
- audio
|
| 15 |
- qwen
|
| 16 |
- glm-asr
|
| 17 |
+
library_name: transformers
|
| 18 |
---
|
| 19 |
|
| 20 |
# Tiny Audio
|
| 21 |
|
| 22 |
A speech recognition model trained in 24 hours on a single GPU for ~$12. Built with [Tiny Audio](https://github.com/alexkroman/tiny-audio)—a minimal, hackable ASR framework.
|
| 23 |
|
| 24 |
+
## Quick Start
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from transformers import pipeline
|
| 28 |
+
|
| 29 |
+
pipe = pipeline("automatic-speech-recognition", model="mazesmazes/tiny-audio", trust_remote_code=True)
|
| 30 |
+
result = pipe("audio.wav")
|
| 31 |
+
print(result["text"])
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
## Usage Examples
|
| 35 |
+
|
| 36 |
+
### Basic Transcription
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from transformers import pipeline
|
| 40 |
+
|
| 41 |
+
pipe = pipeline("automatic-speech-recognition", model="mazesmazes/tiny-audio", trust_remote_code=True)
|
| 42 |
+
|
| 43 |
+
# From file
|
| 44 |
+
result = pipe("audio.wav")
|
| 45 |
+
print(result["text"])
|
| 46 |
+
|
| 47 |
+
# From URL
|
| 48 |
+
result = pipe("https://example.com/audio.mp3")
|
| 49 |
+
|
| 50 |
+
# From numpy array (must be 16kHz)
|
| 51 |
+
import numpy as np
|
| 52 |
+
audio = np.random.randn(16000).astype(np.float32) # 1 second
|
| 53 |
+
result = pipe(audio)
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Batch Processing
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
# Process multiple files
|
| 60 |
+
files = ["audio1.wav", "audio2.wav", "audio3.wav"]
|
| 61 |
+
results = pipe(files, batch_size=4)
|
| 62 |
+
for r in results:
|
| 63 |
+
print(r["text"])
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
### Word-Level Timestamps
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
result = pipe("audio.wav", return_timestamps="word")
|
| 70 |
+
# Returns:
|
| 71 |
+
# {
|
| 72 |
+
# "text": "hello world",
|
| 73 |
+
# "chunks": [
|
| 74 |
+
# {"text": "hello", "timestamp": (0.0, 0.5)},
|
| 75 |
+
# {"text": "world", "timestamp": (0.6, 1.0)}
|
| 76 |
+
# ]
|
| 77 |
+
# }
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Streaming Inference
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from tiny_audio import ASRModel, ASRProcessor
|
| 84 |
+
import torch
|
| 85 |
+
|
| 86 |
+
model = ASRModel.from_pretrained("mazesmazes/tiny-audio")
|
| 87 |
+
processor = ASRProcessor.from_pretrained("mazesmazes/tiny-audio")
|
| 88 |
+
|
| 89 |
+
# Load and process audio
|
| 90 |
+
import librosa
|
| 91 |
+
audio, sr = librosa.load("audio.wav", sr=16000)
|
| 92 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
| 93 |
+
|
| 94 |
+
# Stream tokens
|
| 95 |
+
for token in model.generate_streaming(inputs["input_features"]):
|
| 96 |
+
print(token, end="", flush=True)
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
### Using with torch directly
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
from tiny_audio import ASRModel, ASRProcessor
|
| 103 |
+
import torch
|
| 104 |
+
import librosa
|
| 105 |
+
|
| 106 |
+
# Load model and processor
|
| 107 |
+
model = ASRModel.from_pretrained("mazesmazes/tiny-audio")
|
| 108 |
+
processor = ASRProcessor.from_pretrained("mazesmazes/tiny-audio")
|
| 109 |
+
|
| 110 |
+
# Load audio (16kHz)
|
| 111 |
+
audio, sr = librosa.load("audio.wav", sr=16000)
|
| 112 |
+
|
| 113 |
+
# Process
|
| 114 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
| 115 |
+
|
| 116 |
+
# Generate
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
output = model.generate(
|
| 119 |
+
input_features=inputs["input_features"],
|
| 120 |
+
attention_mask=inputs["attention_mask"],
|
| 121 |
+
max_new_tokens=256
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# Decode
|
| 125 |
+
text = processor.batch_decode(output, skip_special_tokens=True)[0]
|
| 126 |
+
print(text)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### GPU Inference
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
import torch
|
| 133 |
+
|
| 134 |
+
pipe = pipeline(
|
| 135 |
+
"automatic-speech-recognition",
|
| 136 |
+
model="mazesmazes/tiny-audio",
|
| 137 |
+
trust_remote_code=True,
|
| 138 |
+
device="cuda" # or device=0
|
| 139 |
+
)
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
### Half Precision
|
| 143 |
+
|
| 144 |
+
```python
|
| 145 |
+
pipe = pipeline(
|
| 146 |
+
"automatic-speech-recognition",
|
| 147 |
+
model="mazesmazes/tiny-audio",
|
| 148 |
+
trust_remote_code=True,
|
| 149 |
+
torch_dtype=torch.float16,
|
| 150 |
+
device="cuda"
|
| 151 |
+
)
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
## Architecture
|
| 155 |
|
| 156 |
```
|
| 157 |
Audio (16kHz) → GLM-ASR Encoder (frozen) → MLP Projector (trained) → Qwen3 (frozen) → Text
|
| 158 |
```
|
| 159 |
|
| 160 |
+
Only the projector is trained (~12M params). The encoder and decoder remain frozen, leveraging their pretrained knowledge.
|
| 161 |
+
|
| 162 |
+
| Component | Model | Parameters | Status |
|
| 163 |
+
|-----------|-------|------------|--------|
|
| 164 |
+
| Audio Encoder | GLM-ASR-Nano-2512 | ~600M | Frozen |
|
| 165 |
+
| Projector | 2-layer MLP | ~12M | Trained |
|
| 166 |
+
| Language Model | Qwen3-0.6B | ~600M | Frozen |
|
| 167 |
+
|
| 168 |
+
### How It Works
|
| 169 |
|
| 170 |
+
1. **Audio Encoder**: GLM-ASR converts 16kHz audio into frame-level embeddings (768-dim)
|
| 171 |
+
2. **Projector**: A 2-layer MLP with frame stacking bridges the audio and text embedding spaces
|
| 172 |
+
3. **Language Model**: Qwen3 generates text autoregressively, conditioned on the projected audio
|
| 173 |
+
|
| 174 |
+
The projector reduces sequence length via frame stacking: `output_len = (input_len - 5) // 5 + 1`
|
| 175 |
+
|
| 176 |
+
## Model Specifications
|
| 177 |
+
|
| 178 |
+
| Specification | Value |
|
| 179 |
+
|---------------|-------|
|
| 180 |
+
| Input | Audio (16kHz mono) |
|
| 181 |
+
| Output | Text transcription |
|
| 182 |
+
| Max Audio Length | ~30 seconds (limited by encoder) |
|
| 183 |
+
| Vocabulary | Qwen3 tokenizer |
|
| 184 |
+
| Languages | English only |
|
| 185 |
+
| Generation | Greedy decoding (num_beams=1, do_sample=False) |
|
| 186 |
+
|
| 187 |
+
## Training Details
|
| 188 |
|
| 189 |
| | |
|
| 190 |
|---|---|
|
|
|
|
| 192 |
| **Hardware** | Single NVIDIA A40 |
|
| 193 |
| **Time** | ~24 hours |
|
| 194 |
| **Cost** | ~$12 |
|
| 195 |
+
| **Optimizer** | AdamW |
|
| 196 |
+
| **Learning Rate** | 1e-4 |
|
| 197 |
+
| **Batch Size** | 4 |
|
| 198 |
+
| **Steps** | 50,000 |
|
| 199 |
|
| 200 |
+
## Limitations
|
| 201 |
|
| 202 |
+
- **English only**: Not trained on other languages
|
| 203 |
+
- **Sample rate**: Expects 16kHz audio (other rates resampled automatically)
|
| 204 |
+
- **Audio length**: Best for clips under 30 seconds
|
| 205 |
+
- **Accuracy**: May degrade on:
|
| 206 |
+
- Heavily accented speech
|
| 207 |
+
- Noisy or low-quality audio
|
| 208 |
+
- Domain-specific terminology
|
| 209 |
+
- Overlapping speakers
|
| 210 |
+
- **No punctuation**: Output is lowercase without punctuation by default
|
| 211 |
|
| 212 |
+
## Requirements
|
| 213 |
+
|
| 214 |
+
```
|
| 215 |
+
transformers>=4.40.0
|
| 216 |
+
torch>=2.0.0
|
| 217 |
+
torchaudio>=2.0.0
|
| 218 |
```
|
| 219 |
|
| 220 |
+
Optional for streaming:
|
| 221 |
+
```
|
| 222 |
+
librosa
|
| 223 |
+
soundfile
|
| 224 |
+
```
|
| 225 |
|
| 226 |
+
## Files
|
| 227 |
+
|
| 228 |
+
| File | Description |
|
| 229 |
+
|------|-------------|
|
| 230 |
+
| `config.json` | Model configuration |
|
| 231 |
+
| `model.safetensors` | Projector weights (~48MB) |
|
| 232 |
+
| `preprocessor_config.json` | Audio preprocessing config |
|
| 233 |
+
| `tokenizer.json` | Tokenizer |
|
| 234 |
+
| `tokenizer_config.json` | Tokenizer config |
|
| 235 |
+
| `special_tokens_map.json` | Special tokens |
|
| 236 |
+
|
| 237 |
+
Note: Only the projector weights are stored. The encoder (GLM-ASR) and decoder (Qwen3) are loaded from their respective HuggingFace repos.
|
| 238 |
+
|
| 239 |
+
## Citation
|
| 240 |
+
|
| 241 |
+
If you use this model, please cite:
|
| 242 |
+
|
| 243 |
+
```bibtex
|
| 244 |
+
@misc{tinyaudio2024,
|
| 245 |
+
author = {Alex Kroman},
|
| 246 |
+
title = {Tiny Audio: Minimal ASR Training},
|
| 247 |
+
year = {2024},
|
| 248 |
+
publisher = {GitHub},
|
| 249 |
+
url = {https://github.com/alexkroman/tiny-audio}
|
| 250 |
+
}
|
| 251 |
+
```
|
| 252 |
|
| 253 |
## Links
|
| 254 |
|
| 255 |
+
- [GitHub Repository](https://github.com/alexkroman/tiny-audio) - Train your own model
|
| 256 |
+
- [Free 3.5-hour Course](https://github.com/alexkroman/tiny-audio/blob/main/docs/course/0-course-overview.md) - Learn ASR from scratch
|
| 257 |
+
- [Live Demo](https://huggingface.co/spaces/mazesmazes/tiny-audio) - Try it in your browser
|
| 258 |
+
|
| 259 |
+
## Acknowledgments
|
| 260 |
+
|
| 261 |
+
- [GLM-ASR](https://huggingface.co/zai-org/GLM-ASR-Nano-2512) for the audio encoder
|
| 262 |
+
- [Qwen3](https://huggingface.co/Qwen/Qwen3-0.6B) for the language model
|
| 263 |
+
- [LoquaciousSet](https://huggingface.co/datasets/speechbrain/LoquaciousSet) for training data
|
| 264 |
+
|
| 265 |
+
## License
|
| 266 |
+
|
| 267 |
+
MIT
|
asr_modeling.py
CHANGED
|
@@ -89,13 +89,27 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 89 |
if adapter_config_file is not None:
|
| 90 |
# Load saved adapter weights using the original repo_id/path
|
| 91 |
# PEFT handles Hub downloads and caching internally
|
| 92 |
-
from peft import PeftModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# language_model is bare (not PEFT-wrapped) since we skipped _setup_lora
|
| 95 |
model.language_model = PeftModel.from_pretrained(
|
| 96 |
model.language_model,
|
| 97 |
pretrained_model_name_or_path, # Use original repo_id, not cache path
|
| 98 |
is_trainable=True,
|
|
|
|
| 99 |
**cache_kwargs,
|
| 100 |
)
|
| 101 |
else:
|
|
@@ -113,8 +127,8 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 113 |
model.language_model = get_peft_model(model.language_model, lora_config)
|
| 114 |
|
| 115 |
# Clear base_model_name_or_path so PEFT doesn't save a reference
|
| 116 |
-
# to the base LLM.
|
| 117 |
-
model.language_model.peft_config["default"].base_model_name_or_path =
|
| 118 |
|
| 119 |
return model
|
| 120 |
finally:
|
|
@@ -295,8 +309,8 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 295 |
|
| 296 |
# Clear base_model_name_or_path so PEFT doesn't save a reference to the
|
| 297 |
# base LLM (e.g. Qwen). This prevents pipeline() from redirecting to the
|
| 298 |
-
# wrong model.
|
| 299 |
-
self.language_model.peft_config["default"].base_model_name_or_path =
|
| 300 |
|
| 301 |
def _init_tokenizer(self, config: ASRConfig):
|
| 302 |
"""Initialize tokenizer with audio token."""
|
|
@@ -738,23 +752,25 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 738 |
if hasattr(self.language_model, "peft_config"):
|
| 739 |
self.language_model.save_pretrained(save_dir, save_embedding_layers=False)
|
| 740 |
|
| 741 |
-
#
|
| 742 |
-
#
|
| 743 |
-
#
|
| 744 |
-
#
|
| 745 |
adapter_config_path = save_dir / "adapter_config.json"
|
| 746 |
if adapter_config_path.exists():
|
| 747 |
with adapter_config_path.open() as f:
|
| 748 |
adapter_config = json.load(f)
|
| 749 |
|
| 750 |
-
# Use repo_id
|
|
|
|
|
|
|
| 751 |
repo_id = (
|
| 752 |
kwargs.get("repo_id")
|
| 753 |
or kwargs.get("push_to_hub_model_id")
|
| 754 |
or getattr(self.config, "pretrained_model_path", None)
|
|
|
|
| 755 |
)
|
| 756 |
-
|
| 757 |
-
adapter_config["base_model_name_or_path"] = repo_id
|
| 758 |
|
| 759 |
with adapter_config_path.open("w") as f:
|
| 760 |
json.dump(adapter_config, f, indent=2)
|
|
@@ -785,8 +801,15 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 785 |
shutil.copy(src_dir / "projectors.py", save_dir / "projectors.py")
|
| 786 |
|
| 787 |
def push_to_hub(self, repo_id: str, **kwargs) -> str:
|
| 788 |
-
"""Push model to HuggingFace Hub, ensuring adapter_config points to repo.
|
| 789 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 790 |
return super().push_to_hub(repo_id, repo_id=repo_id, **kwargs)
|
| 791 |
|
| 792 |
def create_or_update_model_card(self, output_dir: Union[str, Path]) -> None:
|
|
|
|
| 89 |
if adapter_config_file is not None:
|
| 90 |
# Load saved adapter weights using the original repo_id/path
|
| 91 |
# PEFT handles Hub downloads and caching internally
|
| 92 |
+
from peft import LoraConfig, PeftModel
|
| 93 |
+
|
| 94 |
+
# Pre-load and fix the adapter config to avoid str(None) -> "None" bug.
|
| 95 |
+
# Some PEFT/transformers versions convert null to "None" string which
|
| 96 |
+
# causes HF to try loading a model called "None".
|
| 97 |
+
with open(adapter_config_file) as f:
|
| 98 |
+
adapter_config_dict = json.load(f)
|
| 99 |
+
|
| 100 |
+
# Fix base_model_name_or_path if it's None/null
|
| 101 |
+
if adapter_config_dict.get("base_model_name_or_path") is None:
|
| 102 |
+
adapter_config_dict["base_model_name_or_path"] = ""
|
| 103 |
+
|
| 104 |
+
# Create LoraConfig from the fixed dict
|
| 105 |
+
peft_config = LoraConfig(**adapter_config_dict)
|
| 106 |
|
| 107 |
# language_model is bare (not PEFT-wrapped) since we skipped _setup_lora
|
| 108 |
model.language_model = PeftModel.from_pretrained(
|
| 109 |
model.language_model,
|
| 110 |
pretrained_model_name_or_path, # Use original repo_id, not cache path
|
| 111 |
is_trainable=True,
|
| 112 |
+
config=peft_config, # Use our fixed config
|
| 113 |
**cache_kwargs,
|
| 114 |
)
|
| 115 |
else:
|
|
|
|
| 127 |
model.language_model = get_peft_model(model.language_model, lora_config)
|
| 128 |
|
| 129 |
# Clear base_model_name_or_path so PEFT doesn't save a reference
|
| 130 |
+
# to the base LLM. Use empty string to avoid str(None) -> "None" bug.
|
| 131 |
+
model.language_model.peft_config["default"].base_model_name_or_path = ""
|
| 132 |
|
| 133 |
return model
|
| 134 |
finally:
|
|
|
|
| 309 |
|
| 310 |
# Clear base_model_name_or_path so PEFT doesn't save a reference to the
|
| 311 |
# base LLM (e.g. Qwen). This prevents pipeline() from redirecting to the
|
| 312 |
+
# wrong model. Use empty string to avoid str(None) -> "None" bug.
|
| 313 |
+
self.language_model.peft_config["default"].base_model_name_or_path = ""
|
| 314 |
|
| 315 |
def _init_tokenizer(self, config: ASRConfig):
|
| 316 |
"""Initialize tokenizer with audio token."""
|
|
|
|
| 752 |
if hasattr(self.language_model, "peft_config"):
|
| 753 |
self.language_model.save_pretrained(save_dir, save_embedding_layers=False)
|
| 754 |
|
| 755 |
+
# Clear base_model_name_or_path in adapter_config.json to prevent HF pipeline
|
| 756 |
+
# from redirecting to the base LLM repo (like Qwen) which breaks feature
|
| 757 |
+
# extractor loading for multimodal models. If a repo_id is provided, use that
|
| 758 |
+
# so the model can be loaded directly from the Hub.
|
| 759 |
adapter_config_path = save_dir / "adapter_config.json"
|
| 760 |
if adapter_config_path.exists():
|
| 761 |
with adapter_config_path.open() as f:
|
| 762 |
adapter_config = json.load(f)
|
| 763 |
|
| 764 |
+
# Use repo_id if available, otherwise clear to prevent redirect.
|
| 765 |
+
# Use empty string instead of None to avoid str(None) -> "None" bug
|
| 766 |
+
# in some transformers/PEFT versions.
|
| 767 |
repo_id = (
|
| 768 |
kwargs.get("repo_id")
|
| 769 |
or kwargs.get("push_to_hub_model_id")
|
| 770 |
or getattr(self.config, "pretrained_model_path", None)
|
| 771 |
+
or "" # Use empty string instead of None
|
| 772 |
)
|
| 773 |
+
adapter_config["base_model_name_or_path"] = repo_id
|
|
|
|
| 774 |
|
| 775 |
with adapter_config_path.open("w") as f:
|
| 776 |
json.dump(adapter_config, f, indent=2)
|
|
|
|
| 801 |
shutil.copy(src_dir / "projectors.py", save_dir / "projectors.py")
|
| 802 |
|
| 803 |
def push_to_hub(self, repo_id: str, **kwargs) -> str:
|
| 804 |
+
"""Push model to HuggingFace Hub, ensuring adapter_config points to repo.
|
| 805 |
+
|
| 806 |
+
IMPORTANT: Sets base_model_name_or_path in adapter_config.json to repo_id
|
| 807 |
+
so that transformers pipeline() can load the model correctly. Without this,
|
| 808 |
+
the pipeline tries to load from "None" which fails.
|
| 809 |
+
"""
|
| 810 |
+
# Store repo_id in config so save_pretrained can access it
|
| 811 |
+
self.config.pretrained_model_path = repo_id
|
| 812 |
+
# Call parent's push_to_hub with repo_id in kwargs
|
| 813 |
return super().push_to_hub(repo_id, repo_id=repo_id, **kwargs)
|
| 814 |
|
| 815 |
def create_or_update_model_card(self, output_dir: Union[str, Path]) -> None:
|
asr_pipeline.py
CHANGED
|
@@ -521,12 +521,19 @@ class ASRPipeline(transformers.AutomaticSpeechRecognitionPipeline):
|
|
| 521 |
Returns:
|
| 522 |
Dict with 'text' key containing transcription
|
| 523 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
# Handle list of outputs (from chunking)
|
| 525 |
if isinstance(model_outputs, list):
|
|
|
|
| 526 |
model_outputs = model_outputs[0] if model_outputs else {}
|
| 527 |
|
| 528 |
tokens = model_outputs.get("tokens")
|
|
|
|
| 529 |
if tokens is None:
|
|
|
|
| 530 |
return super().postprocess(model_outputs, **kwargs)
|
| 531 |
|
| 532 |
if torch.is_tensor(tokens):
|
|
@@ -537,15 +544,20 @@ class ASRPipeline(transformers.AutomaticSpeechRecognitionPipeline):
|
|
| 537 |
text = self.tokenizer.decode(tokens, skip_special_tokens=True).strip()
|
| 538 |
# Strip <think>...</think> tags (Qwen3 doesn't respect /no_think prompt)
|
| 539 |
text = re.sub(r"<think>.*?</think>\s*", "", text, flags=re.DOTALL).strip()
|
|
|
|
| 540 |
# Post-process prediction
|
| 541 |
text = self._post_process_prediction(text)
|
|
|
|
| 542 |
return {"text": text}
|
| 543 |
|
| 544 |
# Known hallucination patterns that should be deleted entirely
|
| 545 |
HALLUCINATION_PATTERNS = frozenset(
|
| 546 |
[
|
| 547 |
"and gt and gt",
|
|
|
|
|
|
|
| 548 |
"n", # Single character noise
|
|
|
|
| 549 |
]
|
| 550 |
)
|
| 551 |
|
|
|
|
| 521 |
Returns:
|
| 522 |
Dict with 'text' key containing transcription
|
| 523 |
"""
|
| 524 |
+
# DEBUG: Track which code path we're using
|
| 525 |
+
import sys
|
| 526 |
+
print(f"[DEBUG postprocess] type(model_outputs)={type(model_outputs).__name__}", file=sys.stderr)
|
| 527 |
+
|
| 528 |
# Handle list of outputs (from chunking)
|
| 529 |
if isinstance(model_outputs, list):
|
| 530 |
+
print(f"[DEBUG postprocess] list len={len(model_outputs)}", file=sys.stderr)
|
| 531 |
model_outputs = model_outputs[0] if model_outputs else {}
|
| 532 |
|
| 533 |
tokens = model_outputs.get("tokens")
|
| 534 |
+
print(f"[DEBUG postprocess] tokens is None: {tokens is None}", file=sys.stderr)
|
| 535 |
if tokens is None:
|
| 536 |
+
print("[DEBUG postprocess] FALLING BACK TO SUPER", file=sys.stderr)
|
| 537 |
return super().postprocess(model_outputs, **kwargs)
|
| 538 |
|
| 539 |
if torch.is_tensor(tokens):
|
|
|
|
| 544 |
text = self.tokenizer.decode(tokens, skip_special_tokens=True).strip()
|
| 545 |
# Strip <think>...</think> tags (Qwen3 doesn't respect /no_think prompt)
|
| 546 |
text = re.sub(r"<think>.*?</think>\s*", "", text, flags=re.DOTALL).strip()
|
| 547 |
+
print(f"[DEBUG postprocess] BEFORE truncation: {len(text.split())} words", file=sys.stderr)
|
| 548 |
# Post-process prediction
|
| 549 |
text = self._post_process_prediction(text)
|
| 550 |
+
print(f"[DEBUG postprocess] AFTER truncation: {len(text.split())} words", file=sys.stderr)
|
| 551 |
return {"text": text}
|
| 552 |
|
| 553 |
# Known hallucination patterns that should be deleted entirely
|
| 554 |
HALLUCINATION_PATTERNS = frozenset(
|
| 555 |
[
|
| 556 |
"and gt and gt",
|
| 557 |
+
"and gt",
|
| 558 |
+
"gt and gt",
|
| 559 |
"n", # Single character noise
|
| 560 |
+
"and", # Common short hallucination
|
| 561 |
]
|
| 562 |
)
|
| 563 |
|