Update custom model files, README, and requirements
Browse files- .gitattributes +0 -1
- asr_modeling.py +11 -3
- asr_processing.py +5 -4
- projectors.py +11 -9
.gitattributes
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
tokenizer_config.json -filter -diff -merge text
|
| 4 |
-
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
tokenizer_config.json -filter -diff -merge text
|
|
|
asr_modeling.py
CHANGED
|
@@ -38,7 +38,7 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 38 |
_is_loading_from_pretrained: bool = False
|
| 39 |
_pretrained_model_path: Optional[str] = None
|
| 40 |
|
| 41 |
-
TRANSCRIBE_PROMPT = "
|
| 42 |
|
| 43 |
@classmethod
|
| 44 |
def from_pretrained(cls, pretrained_model_name_or_path: str, *args, **kwargs) -> "ASRModel":
|
|
@@ -543,7 +543,10 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 543 |
messages: list[dict[str, str]] = []
|
| 544 |
if system_prompt:
|
| 545 |
messages.append({"role": "system", "content": system_prompt})
|
| 546 |
-
|
|
|
|
|
|
|
|
|
|
| 547 |
|
| 548 |
chat_result = self.tokenizer.apply_chat_template(
|
| 549 |
messages,
|
|
@@ -618,7 +621,10 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 618 |
messages: list[dict[str, str]] = []
|
| 619 |
if system_prompt:
|
| 620 |
messages.append({"role": "system", "content": system_prompt})
|
| 621 |
-
|
|
|
|
|
|
|
|
|
|
| 622 |
|
| 623 |
chat_result = self.tokenizer.apply_chat_template(
|
| 624 |
messages,
|
|
@@ -778,6 +784,8 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 778 |
shutil.copy(asr_file, save_dir / asr_file.name)
|
| 779 |
# Copy projectors module
|
| 780 |
shutil.copy(src_dir / "projectors.py", save_dir / "projectors.py")
|
|
|
|
|
|
|
| 781 |
|
| 782 |
def push_to_hub(self, repo_id: str, **kwargs) -> str:
|
| 783 |
"""Push model to HuggingFace Hub, ensuring adapter_config points to repo.
|
|
|
|
| 38 |
_is_loading_from_pretrained: bool = False
|
| 39 |
_pretrained_model_path: Optional[str] = None
|
| 40 |
|
| 41 |
+
TRANSCRIBE_PROMPT = "Transcribe speech to text" # Audio tokens come BEFORE this
|
| 42 |
|
| 43 |
@classmethod
|
| 44 |
def from_pretrained(cls, pretrained_model_name_or_path: str, *args, **kwargs) -> "ASRModel":
|
|
|
|
| 543 |
messages: list[dict[str, str]] = []
|
| 544 |
if system_prompt:
|
| 545 |
messages.append({"role": "system", "content": system_prompt})
|
| 546 |
+
# Audio BEFORE prompt for proper causal attention
|
| 547 |
+
messages.append(
|
| 548 |
+
{"role": "user", "content": audio_placeholder + " " + self.TRANSCRIBE_PROMPT}
|
| 549 |
+
)
|
| 550 |
|
| 551 |
chat_result = self.tokenizer.apply_chat_template(
|
| 552 |
messages,
|
|
|
|
| 621 |
messages: list[dict[str, str]] = []
|
| 622 |
if system_prompt:
|
| 623 |
messages.append({"role": "system", "content": system_prompt})
|
| 624 |
+
# Audio BEFORE prompt for proper causal attention
|
| 625 |
+
messages.append(
|
| 626 |
+
{"role": "user", "content": audio_placeholder + " " + self.TRANSCRIBE_PROMPT}
|
| 627 |
+
)
|
| 628 |
|
| 629 |
chat_result = self.tokenizer.apply_chat_template(
|
| 630 |
messages,
|
|
|
|
| 784 |
shutil.copy(asr_file, save_dir / asr_file.name)
|
| 785 |
# Copy projectors module
|
| 786 |
shutil.copy(src_dir / "projectors.py", save_dir / "projectors.py")
|
| 787 |
+
# Copy diarization module
|
| 788 |
+
shutil.copy(src_dir / "diarization.py", save_dir / "diarization.py")
|
| 789 |
|
| 790 |
def push_to_hub(self, repo_id: str, **kwargs) -> str:
|
| 791 |
"""Push model to HuggingFace Hub, ensuring adapter_config points to repo.
|
asr_processing.py
CHANGED
|
@@ -17,7 +17,7 @@ class ASRProcessor(ProcessorMixin):
|
|
| 17 |
feature_extractor_class = "AutoFeatureExtractor"
|
| 18 |
tokenizer_class = "AutoTokenizer"
|
| 19 |
AUDIO_TOKEN = "<audio>"
|
| 20 |
-
TRANSCRIBE_PROMPT = "Transcribe
|
| 21 |
# Default conv layers for Whisper/GLM-ASR: [(pad, kernel, stride), ...]
|
| 22 |
DEFAULT_ENCODER_CONV_LAYERS = [(1, 3, 1), (1, 3, 2)]
|
| 23 |
|
|
@@ -89,10 +89,11 @@ class ASRProcessor(ProcessorMixin):
|
|
| 89 |
else:
|
| 90 |
num_audio_tokens = 0
|
| 91 |
|
| 92 |
-
# Build prompt with audio token placeholders
|
| 93 |
-
user_content = self.TRANSCRIBE_PROMPT
|
| 94 |
if num_audio_tokens > 0:
|
| 95 |
-
user_content
|
|
|
|
|
|
|
| 96 |
|
| 97 |
messages = []
|
| 98 |
if system_prompt:
|
|
|
|
| 17 |
feature_extractor_class = "AutoFeatureExtractor"
|
| 18 |
tokenizer_class = "AutoTokenizer"
|
| 19 |
AUDIO_TOKEN = "<audio>"
|
| 20 |
+
TRANSCRIBE_PROMPT = "Transcribe speech to text"
|
| 21 |
# Default conv layers for Whisper/GLM-ASR: [(pad, kernel, stride), ...]
|
| 22 |
DEFAULT_ENCODER_CONV_LAYERS = [(1, 3, 1), (1, 3, 2)]
|
| 23 |
|
|
|
|
| 89 |
else:
|
| 90 |
num_audio_tokens = 0
|
| 91 |
|
| 92 |
+
# Build prompt with audio token placeholders (audio BEFORE prompt)
|
|
|
|
| 93 |
if num_audio_tokens > 0:
|
| 94 |
+
user_content = self.AUDIO_TOKEN * num_audio_tokens + " " + self.TRANSCRIBE_PROMPT
|
| 95 |
+
else:
|
| 96 |
+
user_content = self.TRANSCRIBE_PROMPT
|
| 97 |
|
| 98 |
messages = []
|
| 99 |
if system_prompt:
|
projectors.py
CHANGED
|
@@ -33,11 +33,12 @@ class MLPAudioProjector(nn.Module):
|
|
| 33 |
|
| 34 |
encoder_dim = getattr(config, "encoder_dim", 768)
|
| 35 |
llm_dim = getattr(config, "llm_dim", 2048)
|
| 36 |
-
self.k = getattr(config, "projector_pool_stride",
|
| 37 |
|
| 38 |
# Frame stacking: concat k adjacent frames then project
|
|
|
|
| 39 |
in_dim = encoder_dim * self.k
|
| 40 |
-
hidden_dim = llm_dim
|
| 41 |
self.linear_1 = nn.Linear(in_dim, hidden_dim)
|
| 42 |
self.act = nn.GELU()
|
| 43 |
self.linear_2 = nn.Linear(hidden_dim, llm_dim)
|
|
@@ -85,6 +86,7 @@ class SimpleAdapter(nn.Module):
|
|
| 85 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 86 |
return self.fc2(self.act(self.fc1(x)))
|
| 87 |
|
|
|
|
| 88 |
class MOSAProjector(nn.Module):
|
| 89 |
"""MOSA-Base projector: simple 2-layer ReLU router with 4 simple adapters.
|
| 90 |
|
|
@@ -126,7 +128,10 @@ class MOSAProjector(nn.Module):
|
|
| 126 |
# --- 3. Experts (Simple 2-layer GELU adapters) ---
|
| 127 |
# Each expert: llm_dim -> hidden -> llm_dim (much smaller than frame-stacking)
|
| 128 |
self.experts = nn.ModuleList(
|
| 129 |
-
[
|
|
|
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
@@ -149,18 +154,15 @@ class MOSAProjector(nn.Module):
|
|
| 149 |
routing_weights = F.softmax(self.router(x), dim=-1) # (B, out_len, num_experts)
|
| 150 |
|
| 151 |
# --- 3. Expert Mixture (Dense Execution) ---
|
| 152 |
-
expert_outputs = torch.stack(
|
| 153 |
-
[expert(x) for expert in self.experts]
|
| 154 |
-
) # (E, B, out_len, D)
|
| 155 |
return torch.einsum("ebsd, bse -> bsd", expert_outputs, routing_weights)
|
| 156 |
|
| 157 |
def get_output_length(self, input_length: int) -> int:
|
| 158 |
"""Calculate output sequence length after Conv1d downsampling (4x reduction)."""
|
| 159 |
# Conv1d with stride 2, kernel 3, padding 1: out = (in + 2*1 - 3) // 2 + 1 = (in - 1) // 2 + 1
|
| 160 |
# Applied twice for 4x total reduction
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
return length
|
| 164 |
|
| 165 |
|
| 166 |
# =============================================================================
|
|
|
|
| 33 |
|
| 34 |
encoder_dim = getattr(config, "encoder_dim", 768)
|
| 35 |
llm_dim = getattr(config, "llm_dim", 2048)
|
| 36 |
+
self.k = getattr(config, "projector_pool_stride", 4)
|
| 37 |
|
| 38 |
# Frame stacking: concat k adjacent frames then project
|
| 39 |
+
# Hidden dim uses 2x expansion like GLM-ASR's GlmAsrMultiModalProjector
|
| 40 |
in_dim = encoder_dim * self.k
|
| 41 |
+
hidden_dim = llm_dim * 2
|
| 42 |
self.linear_1 = nn.Linear(in_dim, hidden_dim)
|
| 43 |
self.act = nn.GELU()
|
| 44 |
self.linear_2 = nn.Linear(hidden_dim, llm_dim)
|
|
|
|
| 86 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 87 |
return self.fc2(self.act(self.fc1(x)))
|
| 88 |
|
| 89 |
+
|
| 90 |
class MOSAProjector(nn.Module):
|
| 91 |
"""MOSA-Base projector: simple 2-layer ReLU router with 4 simple adapters.
|
| 92 |
|
|
|
|
| 128 |
# --- 3. Experts (Simple 2-layer GELU adapters) ---
|
| 129 |
# Each expert: llm_dim -> hidden -> llm_dim (much smaller than frame-stacking)
|
| 130 |
self.experts = nn.ModuleList(
|
| 131 |
+
[
|
| 132 |
+
SimpleAdapter(self.llm_dim, adapter_hidden, self.llm_dim)
|
| 133 |
+
for _ in range(self.num_experts)
|
| 134 |
+
]
|
| 135 |
)
|
| 136 |
|
| 137 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
| 154 |
routing_weights = F.softmax(self.router(x), dim=-1) # (B, out_len, num_experts)
|
| 155 |
|
| 156 |
# --- 3. Expert Mixture (Dense Execution) ---
|
| 157 |
+
expert_outputs = torch.stack([expert(x) for expert in self.experts]) # (E, B, out_len, D)
|
|
|
|
|
|
|
| 158 |
return torch.einsum("ebsd, bse -> bsd", expert_outputs, routing_weights)
|
| 159 |
|
| 160 |
def get_output_length(self, input_length: int) -> int:
|
| 161 |
"""Calculate output sequence length after Conv1d downsampling (4x reduction)."""
|
| 162 |
# Conv1d with stride 2, kernel 3, padding 1: out = (in + 2*1 - 3) // 2 + 1 = (in - 1) // 2 + 1
|
| 163 |
# Applied twice for 4x total reduction
|
| 164 |
+
after_conv1 = (input_length + 2 * 1 - 3) // 2 + 1
|
| 165 |
+
return (after_conv1 + 2 * 1 - 3) // 2 + 1
|
|
|
|
| 166 |
|
| 167 |
|
| 168 |
# =============================================================================
|