--- license: mit library_name: keras tags: - image-classification - multi-task-learning - art - painting-classification - mobilenet-v2 datasets: - huggan/wikiart metrics: - accuracy - top-5-accuracy --- # WikiArt Multi-Task Painting Classifier A multi-task deep learning model for classifying paintings by **artist**, **genre**, and **style** simultaneously. ## Model Description This model performs three classification tasks on painting images: - **Artist Classification**: 129 artists (Claude Monet, Van Gogh, Picasso, Da Vinci, etc.) - **Genre Classification**: 11 genres (portrait, landscape, abstract painting, etc.) - **Style Classification**: 27 art styles (Impressionism, Cubism, Renaissance, Baroque, etc.) ## Model Architecture - **Base Model**: MobileNetV2 (pre-trained on ImageNet) - **Framework**: TensorFlow/Keras - **Input**: 224×224 RGB images - **Approach**: Multi-head architecture with shared convolutional base - **Total Parameters**: ~3.5M (approximate) ## Training Details ### Dataset - **Source**: [WikiArt dataset](https://huggingface.co/datasets/huggan/wikiart) - **Total Images**: 84,440 paintings - **Split**: 75% training, 25% validation ### Training Procedure - **Preprocessing**: MobileNetV2 preprocessing (normalization) - **Augmentation**: Random horizontal flip, rotation (±5°), zoom (±10%) - **Optimizer**: Adam (1e-3 for frozen, 2e-4 for fine-tuning) - **Loss**: Sparse categorical cross-entropy (for all three tasks) - **Training Stages**: 1. Frozen backbone (2 epochs) 2. Full fine-tuning (10 epochs) ### Evaluation Metrics - Top-1 Accuracy (all tasks) - Top-5 Accuracy (artist and style) ## How to Use ### Load Model