Fixes any potential overflow when calculating attention weights.
Browse files- modeling_phi.py +76 -14
modeling_phi.py
CHANGED
|
@@ -8,7 +8,8 @@ from __future__ import annotations
|
|
| 8 |
|
| 9 |
import math
|
| 10 |
from dataclasses import dataclass, field
|
| 11 |
-
from
|
|
|
|
| 12 |
|
| 13 |
import torch
|
| 14 |
import torch.nn as nn
|
|
@@ -31,6 +32,15 @@ except:
|
|
| 31 |
FusedDense = None
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
@dataclass
|
| 35 |
class InferenceParams:
|
| 36 |
"""Inference parameters passed to model to efficiently calculate
|
|
@@ -218,7 +228,10 @@ class RotaryEmbedding(nn.Module):
|
|
| 218 |
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 219 |
|
| 220 |
def _update_cos_sin_cache(
|
| 221 |
-
self,
|
|
|
|
|
|
|
|
|
|
| 222 |
) -> None:
|
| 223 |
self._seq_len_cached = seqlen
|
| 224 |
|
|
@@ -261,14 +274,30 @@ class RotaryEmbedding(nn.Module):
|
|
| 261 |
seq_start = seqlen_offset
|
| 262 |
seq_end = seq_start + qkv.shape[1]
|
| 263 |
|
| 264 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
self._update_cos_sin_cache(self.max_position_embeddings, device=qkv.device, dtype=qkv.dtype)
|
| 266 |
-
|
| 267 |
if kv is None:
|
| 268 |
-
return _apply_rotary_emb_qkv(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
else:
|
| 270 |
-
q = _apply_rotary_emb(
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
return q, kv
|
| 274 |
|
|
@@ -327,6 +356,7 @@ class SelfAttention(nn.Module):
|
|
| 327 |
self.softmax_scale = softmax_scale
|
| 328 |
self.drop = nn.Dropout(attention_dropout)
|
| 329 |
|
|
|
|
| 330 |
def forward(
|
| 331 |
self,
|
| 332 |
qkv: torch.FloatTensor,
|
|
@@ -337,9 +367,14 @@ class SelfAttention(nn.Module):
|
|
| 337 |
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 338 |
q, k, v = qkv.unbind(dim=2)
|
| 339 |
|
|
|
|
|
|
|
|
|
|
| 340 |
causal = self.causal if causal is None else causal
|
| 341 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 342 |
|
|
|
|
|
|
|
| 343 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 344 |
|
| 345 |
if key_padding_mask is not None:
|
|
@@ -352,7 +387,7 @@ class SelfAttention(nn.Module):
|
|
| 352 |
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
| 353 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
| 354 |
|
| 355 |
-
attention = torch.softmax(scores, dim=-1
|
| 356 |
attention = self.drop(attention)
|
| 357 |
|
| 358 |
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
|
@@ -380,6 +415,7 @@ class CrossAttention(nn.Module):
|
|
| 380 |
self.softmax_scale = softmax_scale
|
| 381 |
self.drop = nn.Dropout(attention_dropout)
|
| 382 |
|
|
|
|
| 383 |
def forward(
|
| 384 |
self,
|
| 385 |
q: torch.FloatTensor,
|
|
@@ -395,9 +431,14 @@ class CrossAttention(nn.Module):
|
|
| 395 |
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
| 396 |
k, v = kv.unbind(dim=2)
|
| 397 |
|
|
|
|
|
|
|
|
|
|
| 398 |
causal = self.causal if causal is None else causal
|
| 399 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 400 |
|
|
|
|
|
|
|
| 401 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 402 |
|
| 403 |
if key_padding_mask is not None:
|
|
@@ -418,7 +459,7 @@ class CrossAttention(nn.Module):
|
|
| 418 |
|
| 419 |
scores = scores.masked_fill(causal_mask, -10000.0)
|
| 420 |
|
| 421 |
-
attention = torch.softmax(scores, dim=-1
|
| 422 |
attention = self.drop(attention)
|
| 423 |
|
| 424 |
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
|
@@ -507,7 +548,13 @@ class MHA(nn.Module):
|
|
| 507 |
if rotary_cls is RotaryEmbedding:
|
| 508 |
rotary_kwargs["max_position_embeddings"] = config.n_positions
|
| 509 |
|
| 510 |
-
self.rotary_emb = rotary_cls(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
# MLP
|
| 513 |
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
|
@@ -532,9 +579,15 @@ class MHA(nn.Module):
|
|
| 532 |
if cross_attn_cls is None:
|
| 533 |
cross_attn_cls = CrossAttention
|
| 534 |
|
| 535 |
-
self.inner_attn = attn_cls(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
self.inner_cross_attn = cross_attn_cls(
|
| 537 |
-
causal=causal,
|
|
|
|
|
|
|
| 538 |
)
|
| 539 |
|
| 540 |
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
|
@@ -603,7 +656,12 @@ class MHA(nn.Module):
|
|
| 603 |
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 604 |
seqlen_k = kv.shape[1]
|
| 605 |
|
| 606 |
-
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
if key_padding_mask is not None:
|
| 608 |
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
| 609 |
|
|
@@ -644,7 +702,11 @@ class MHA(nn.Module):
|
|
| 644 |
|
| 645 |
if self.checkpointing:
|
| 646 |
return torch.utils.checkpoint.checkpoint(
|
| 647 |
-
self.inner_cross_attn,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 648 |
)
|
| 649 |
|
| 650 |
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
|
|
|
|
| 8 |
|
| 9 |
import math
|
| 10 |
from dataclasses import dataclass, field
|
| 11 |
+
from functools import wraps
|
| 12 |
+
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
| 13 |
|
| 14 |
import torch
|
| 15 |
import torch.nn as nn
|
|
|
|
| 32 |
FusedDense = None
|
| 33 |
|
| 34 |
|
| 35 |
+
def disable_autocast(func: Callable) -> Callable:
|
| 36 |
+
@wraps(func)
|
| 37 |
+
def wrapper(*args, **kwargs):
|
| 38 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 39 |
+
return func(*args, **kwargs)
|
| 40 |
+
|
| 41 |
+
return wrapper
|
| 42 |
+
|
| 43 |
+
|
| 44 |
@dataclass
|
| 45 |
class InferenceParams:
|
| 46 |
"""Inference parameters passed to model to efficiently calculate
|
|
|
|
| 228 |
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 229 |
|
| 230 |
def _update_cos_sin_cache(
|
| 231 |
+
self,
|
| 232 |
+
seqlen: int,
|
| 233 |
+
device: Optional[str] = None,
|
| 234 |
+
dtype: Optional[torch.dtype] = None,
|
| 235 |
) -> None:
|
| 236 |
self._seq_len_cached = seqlen
|
| 237 |
|
|
|
|
| 274 |
seq_start = seqlen_offset
|
| 275 |
seq_end = seq_start + qkv.shape[1]
|
| 276 |
|
| 277 |
+
if (
|
| 278 |
+
self._cos_cached.device != qkv.device
|
| 279 |
+
or self._cos_cached.dtype != qkv.dtype
|
| 280 |
+
or (self.training and self._cos_cached.is_inference())
|
| 281 |
+
):
|
| 282 |
self._update_cos_sin_cache(self.max_position_embeddings, device=qkv.device, dtype=qkv.dtype)
|
| 283 |
+
|
| 284 |
if kv is None:
|
| 285 |
+
return _apply_rotary_emb_qkv(
|
| 286 |
+
qkv,
|
| 287 |
+
self._cos_cached[seq_start:seq_end],
|
| 288 |
+
self._sin_cached[seq_start:seq_end],
|
| 289 |
+
)
|
| 290 |
else:
|
| 291 |
+
q = _apply_rotary_emb(
|
| 292 |
+
qkv,
|
| 293 |
+
self._cos_cached[seq_start:seq_end],
|
| 294 |
+
self._sin_cached[seq_start:seq_end],
|
| 295 |
+
)
|
| 296 |
+
kv = _apply_rotary_emb_kv(
|
| 297 |
+
kv,
|
| 298 |
+
self._cos_cached[seq_start:seq_end],
|
| 299 |
+
self._sin_cached[seq_start:seq_end],
|
| 300 |
+
)
|
| 301 |
|
| 302 |
return q, kv
|
| 303 |
|
|
|
|
| 356 |
self.softmax_scale = softmax_scale
|
| 357 |
self.drop = nn.Dropout(attention_dropout)
|
| 358 |
|
| 359 |
+
@disable_autocast
|
| 360 |
def forward(
|
| 361 |
self,
|
| 362 |
qkv: torch.FloatTensor,
|
|
|
|
| 367 |
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 368 |
q, k, v = qkv.unbind(dim=2)
|
| 369 |
|
| 370 |
+
q = q.to(torch.float32)
|
| 371 |
+
k = k.to(torch.float32)
|
| 372 |
+
|
| 373 |
causal = self.causal if causal is None else causal
|
| 374 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 375 |
|
| 376 |
+
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
| 377 |
+
# using float16, which might lead to overflow
|
| 378 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 379 |
|
| 380 |
if key_padding_mask is not None:
|
|
|
|
| 387 |
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
| 388 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
| 389 |
|
| 390 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
| 391 |
attention = self.drop(attention)
|
| 392 |
|
| 393 |
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
|
|
|
| 415 |
self.softmax_scale = softmax_scale
|
| 416 |
self.drop = nn.Dropout(attention_dropout)
|
| 417 |
|
| 418 |
+
@disable_autocast
|
| 419 |
def forward(
|
| 420 |
self,
|
| 421 |
q: torch.FloatTensor,
|
|
|
|
| 431 |
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
| 432 |
k, v = kv.unbind(dim=2)
|
| 433 |
|
| 434 |
+
q = q.to(torch.float32)
|
| 435 |
+
k = k.to(torch.float32)
|
| 436 |
+
|
| 437 |
causal = self.causal if causal is None else causal
|
| 438 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 439 |
|
| 440 |
+
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
| 441 |
+
# using float16, which might lead to overflow
|
| 442 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 443 |
|
| 444 |
if key_padding_mask is not None:
|
|
|
|
| 459 |
|
| 460 |
scores = scores.masked_fill(causal_mask, -10000.0)
|
| 461 |
|
| 462 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
| 463 |
attention = self.drop(attention)
|
| 464 |
|
| 465 |
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
|
|
|
| 548 |
if rotary_cls is RotaryEmbedding:
|
| 549 |
rotary_kwargs["max_position_embeddings"] = config.n_positions
|
| 550 |
|
| 551 |
+
self.rotary_emb = rotary_cls(
|
| 552 |
+
self.rotary_dim,
|
| 553 |
+
base=rotary_base,
|
| 554 |
+
scale_base=rotary_scale_base,
|
| 555 |
+
device=device,
|
| 556 |
+
**rotary_kwargs,
|
| 557 |
+
)
|
| 558 |
|
| 559 |
# MLP
|
| 560 |
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
|
|
|
| 579 |
if cross_attn_cls is None:
|
| 580 |
cross_attn_cls = CrossAttention
|
| 581 |
|
| 582 |
+
self.inner_attn = attn_cls(
|
| 583 |
+
causal=causal,
|
| 584 |
+
softmax_scale=softmax_scale,
|
| 585 |
+
attention_dropout=config.attn_pdrop,
|
| 586 |
+
)
|
| 587 |
self.inner_cross_attn = cross_attn_cls(
|
| 588 |
+
causal=causal,
|
| 589 |
+
softmax_scale=softmax_scale,
|
| 590 |
+
attention_dropout=config.attn_pdrop,
|
| 591 |
)
|
| 592 |
|
| 593 |
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
|
|
|
| 656 |
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 657 |
seqlen_k = kv.shape[1]
|
| 658 |
|
| 659 |
+
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
|
| 660 |
+
None,
|
| 661 |
+
None,
|
| 662 |
+
None,
|
| 663 |
+
None,
|
| 664 |
+
)
|
| 665 |
if key_padding_mask is not None:
|
| 666 |
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
| 667 |
|
|
|
|
| 702 |
|
| 703 |
if self.checkpointing:
|
| 704 |
return torch.utils.checkpoint.checkpoint(
|
| 705 |
+
self.inner_cross_attn,
|
| 706 |
+
q,
|
| 707 |
+
kv,
|
| 708 |
+
key_padding_mask=key_padding_mask,
|
| 709 |
+
causal=causal,
|
| 710 |
)
|
| 711 |
|
| 712 |
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
|