--- license: apache-2.0 pipeline_tag: any-to-any library_name: transformers base_model: - Qwen/Qwen2.5-Omni-7B base_model_relation: quantized language: - en - zh --- For more information (including how to compress models yourself), check out https://huggingface.co/DFloat11 and https://github.com/LeanModels/DFloat11 Feel free to request for other models for compression as well (for either the `diffusers` library, ComfyUI, or any other model), although compressing models that are of architectures that are unfamiliar to me might be more difficult. ### How to Use #### `transformers` ```python import soundfile as sf from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor from qwen_omni_utils import process_mm_info # Highly recommended to enable flash_attention_2 for better acceleration and memory saving. model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-7B", attn_implementation="flash_attention_2", dtype="auto", device_map="cpu" ) DFloat11Model.from_pretrained("mingyi456/Qwen2.5-Omni-7B-DF11", device = "cpu", bfloat16_model = model) model.to("cuda") # IMPORTANT: If you want to disable the talker module, do it here, only after calling `model.to("cuda")` # model.disable_talker() processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B") conversation = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"}, ], }, ] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for inference text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Inference: Generation of the output text and audio text_ids, audio = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) sf.write( "output.wav", audio.reshape(-1).detach().cpu().numpy(), samplerate=24000, ) ```