LLaMA 2.7B Fine-tuned on Dolly

This is a LoRA adapter for LLaMA-2.7B, fine-tuned on the Databricks Dolly dataset for instruction-following tasks.

Model Details

  • Base Model: LLaMA-2.7B
  • Training Method: LoRA (Low-Rank Adaptation)
  • Dataset: Databricks Dolly 15k
  • Adapter Type: PEFT LoRA

LoRA Configuration

  • Rank (r): 16
  • Alpha: 32
  • Dropout: 0.05
  • Target Modules: Query and Value projection layers
  • Trainable Parameters: ~8-16M (adapters only, <1% of base model)

Training Configuration

  • Epochs: 5
  • Batch Size: 4
  • Learning Rate: 5e-04
  • Gradient Accumulation: 1
  • GPUs: 2
  • Training Steps: 6810
  • Optimizer: AdamW
  • Weight Decay: 0.01

Usage

You need to install the required packages:

pip install transformers peft torch

Then load and use the model:

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

# Load base model (replace with actual 2.7B base model)
base_model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",  # Update to 2.7B base if available
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load LoRA adapter
model = PeftModel.from_pretrained(
    base_model,
    "YOUR_USERNAME/llama-2.7b-fine-tuned-on-dolly"
)

# Optional: Merge adapter for faster inference
# model = model.merge_and_unload()

tokenizer = AutoTokenizer.from_pretrained("YOUR_USERNAME/llama-2.7b-fine-tuned-on-dolly")

# Generate
prompt = "Instruction: Write a short poem about AI.\n\nResponse:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **inputs,
    max_length=256,
    temperature=0.7,
    top_p=0.9,
    do_sample=True
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Key Benefits

  • Efficiency: Only ~8-16M trainable parameters (vs billions in full fine-tuning)
  • Storage: Small adapter files (~30-60MB vs multi-GB full models)
  • Modularity: Can swap adapters on the same base model
  • Quality: Maintains competitive performance with full fine-tuning

Limitations

  • Requires the base LLaMA model to use
  • Performance depends on base model quality
  • Trained primarily on English instruction-following tasks
  • May generate biased or incorrect responses

Training Details

This model was fine-tuned using:

  • PEFT/LoRA: Parameter-efficient fine-tuning
  • Training Data: 15k instruction-response pairs from Dolly
  • Task: General instruction following and question answering
  • Learning Rate Schedule: Cosine decay with warmup

Citation

@inproceedings{lora,
  title={LoRA: Low-Rank Adaptation of Large Language Models},
  author={Hu, Edward J and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Wang, Lu and Chen, Weizhu},
  booktitle={International Conference on Learning Representations},
  year={2022}
}

License

This model is released under Apache 2.0 license. Note that LLaMA models have specific usage terms from Meta.

Downloads last month
20
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for minhchuxuan/llama-2.7b-dolly-lora

Adapter
(2308)
this model

Dataset used to train minhchuxuan/llama-2.7b-dolly-lora