--- library_name: transformers base_model: minpeter/tiny-ko-187m-base-250718 tags: - axolotl - generated_from_trainer datasets: - HuggingFaceTB/smol-smoltalk - trillionlabs/multisystem-curated - allenai/tulu-3-sft-personas-instruction-following - lemon-mint/smol-koreantalk - lemon-mint/Korean-FineTome-100k - heegyu/open-korean-instructions-v20231020 - coastral/korean-writing-style-instruct - devngho/korean-instruction-mix model-index: - name: tiny-ko-187m-sft-250718 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.0.dev0` ```yaml base_model: minpeter/tiny-ko-187m-base-250718 hub_model_id: minpeter/tiny-ko-187m-sft-250718 output_dir: ./outputs/tiny-ko-187m-sft-250718 wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer strict: false chat_template: chatml datasets: - path: HuggingFaceTB/smol-smoltalk type: chat_template split: train field_messages: messages message_property_mappings: role: role content: content - path: trillionlabs/multisystem-curated type: chat_template split: train field_messages: messages message_property_mappings: role: role content: content - path: allenai/tulu-3-sft-personas-instruction-following type: chat_template split: train field_messages: messages message_property_mappings: role: role content: content - path: lemon-mint/smol-koreantalk type: chat_template split: train field_messages: messages message_property_mappings: role: role content: content - path: lemon-mint/Korean-FineTome-100k type: chat_template split: train field_messages: messages message_property_mappings: role: role content: content - path: heegyu/open-korean-instructions-v20231020 type: chat_template split: train field_messages: conversations message_property_mappings: role: from content: value roles: user: ["human", "user"] assistant: ["gpt", "assistant", "bot"] system: ["system", "input"] - path: coastral/korean-writing-style-instruct type: chat_template split: train field_messages: conversations message_property_mappings: role: from content: value - path: devngho/korean-instruction-mix type: chat_template split: train field_messages: messages message_property_mappings: role: from content: value dataset_prepared_path: last_run_prepared val_set_size: 0.001 save_safetensors: true sequence_len: 8192 sample_packing: false pad_to_sequence_len: false use_pose: true pose_max_context_len: 65536 overrides_of_model_config: rope_theta: 1000000.0 max_position_embeddings: 65536 gradient_accumulation_steps: 8 micro_batch_size: 16 num_epochs: 1 optimizer: muon lr_scheduler: cosine learning_rate: 3e-4 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: true gradient_checkpointing: false gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true sdp_attention: s2_attention: save_steps: 200 warmup_steps: 20 eval_steps: 200 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: eos_token: '<|im_end|>' plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.lm_eval.LMEvalPlugin lm_eval_tasks: - gsm8k - hellaswag - arc_easy - arc_challenge - piqa - winogrande - openbookqa - wsc - boolq liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true ```

# tiny-ko-187m-sft-250718 This model is a fine-tuned version of [minpeter/tiny-ko-187m-base-250718](https://huggingface.co/minpeter/tiny-ko-187m-base-250718) on the HuggingFaceTB/smol-smoltalk, the trillionlabs/multisystem-curated, the allenai/tulu-3-sft-personas-instruction-following, the lemon-mint/smol-koreantalk, the lemon-mint/Korean-FineTome-100k, the heegyu/open-korean-instructions-v20231020, the coastral/korean-writing-style-instruct and the devngho/korean-instruction-mix datasets. It achieves the following results on the evaluation set: - Loss: 1.6990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 3470 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0 | 0 | 2.1799 | | 1.8649 | 0.0576 | 200 | 1.8603 | | 1.8031 | 0.1153 | 400 | 1.8033 | | 1.7128 | 0.1729 | 600 | 1.7709 | | 1.7758 | 0.2306 | 800 | 1.7492 | | 1.7084 | 0.2882 | 1000 | 1.7339 | | 1.7258 | 0.3458 | 1200 | 1.7225 | | 1.6972 | 0.4035 | 1400 | 1.7149 | | 1.73 | 0.4611 | 1600 | 1.7091 | | 1.7166 | 0.5188 | 1800 | 1.7051 | | 1.688 | 0.5764 | 2000 | 1.7025 | | 1.737 | 0.6341 | 2200 | 1.7010 | | 1.7322 | 0.6917 | 2400 | 1.6998 | | 1.7133 | 0.7493 | 2600 | 1.6994 | | 1.6953 | 0.8070 | 2800 | 1.6992 | | 1.7233 | 0.8646 | 3000 | 1.6990 | | 1.733 | 0.9223 | 3200 | 1.6990 | | 1.7017 | 0.9799 | 3400 | 1.6990 | ### Framework versions - Transformers 4.53.2 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2