Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Text Classification of conversation flow
|
| 2 |
+
|
| 3 |
+
This a ONNX quantized model and is fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large).
|
| 4 |
+
The original model can be found [here](minuva/MiniLMv2-userflow-v2)
|
| 5 |
+
|
| 6 |
+
A flow label is orthogonal to the main conversation goal, implying that it categorizes actions or responses in a way that is independent from the primary objective of the conversation.
|
| 7 |
+
|
| 8 |
+
# Usage
|
| 9 |
+
|
| 10 |
+
## Installation
|
| 11 |
+
```bash
|
| 12 |
+
pip install tokenizers
|
| 13 |
+
pip install onnxruntime
|
| 14 |
+
git clone https://huggingface.co/minuva/MiniLMv2-userflow-v2-onnx
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## Run the Model
|
| 19 |
+
|
| 20 |
+
```py
|
| 21 |
+
import os
|
| 22 |
+
import numpy as np
|
| 23 |
+
import json
|
| 24 |
+
|
| 25 |
+
from tokenizers import Tokenizer
|
| 26 |
+
from onnxruntime import InferenceSession
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
model_name = "minuva/MiniLMv2-userflow-v2-onnx"
|
| 30 |
+
|
| 31 |
+
tokenizer = Tokenizer.from_pretrained(model_name)
|
| 32 |
+
tokenizer.enable_padding(
|
| 33 |
+
pad_token="<pad>",
|
| 34 |
+
pad_id=1,
|
| 35 |
+
)
|
| 36 |
+
tokenizer.enable_truncation(max_length=256)
|
| 37 |
+
batch_size = 16
|
| 38 |
+
|
| 39 |
+
texts = ["I am angry", "I feel in love"]
|
| 40 |
+
outputs = []
|
| 41 |
+
model = InferenceSession("MiniLMv2-userflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
|
| 42 |
+
|
| 43 |
+
with open(os.path.join("MiniLMv2-userflow-v2-onnx", "config.json"), "r") as f:
|
| 44 |
+
config = json.load(f)
|
| 45 |
+
|
| 46 |
+
output_names = [output.name for output in model.get_outputs()]
|
| 47 |
+
input_names = [input.name for input in model.get_inputs()]
|
| 48 |
+
|
| 49 |
+
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
|
| 50 |
+
encodings = tokenizer.encode_batch(list(subtexts))
|
| 51 |
+
inputs = {
|
| 52 |
+
"input_ids": np.vstack(
|
| 53 |
+
[encoding.ids for encoding in encodings],
|
| 54 |
+
),
|
| 55 |
+
"attention_mask": np.vstack(
|
| 56 |
+
[encoding.attention_mask for encoding in encodings],
|
| 57 |
+
),
|
| 58 |
+
"token_type_ids": np.vstack(
|
| 59 |
+
[encoding.type_ids for encoding in encodings],
|
| 60 |
+
),
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
for input_name in input_names:
|
| 64 |
+
if input_name not in inputs:
|
| 65 |
+
raise ValueError(f"Input name {input_name} not found in inputs")
|
| 66 |
+
|
| 67 |
+
inputs = {input_name: inputs[input_name] for input_name in input_names}
|
| 68 |
+
output = np.squeeze(
|
| 69 |
+
np.stack(
|
| 70 |
+
model.run(output_names=output_names, input_feed=inputs)
|
| 71 |
+
),
|
| 72 |
+
axis=0,
|
| 73 |
+
)
|
| 74 |
+
outputs.append(output)
|
| 75 |
+
|
| 76 |
+
outputs = np.concatenate(outputs, axis=0)
|
| 77 |
+
scores = 1 / (1 + np.exp(-outputs))
|
| 78 |
+
results = []
|
| 79 |
+
for item in scores:
|
| 80 |
+
labels = []
|
| 81 |
+
scores = []
|
| 82 |
+
for idx, s in enumerate(item):
|
| 83 |
+
labels.append(config["id2label"][str(idx)])
|
| 84 |
+
scores.append(float(s))
|
| 85 |
+
results.append({"labels": labels, "scores": scores})
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
res = []
|
| 89 |
+
|
| 90 |
+
for result in results:
|
| 91 |
+
joined = list(zip(result['labels'], result['scores']))
|
| 92 |
+
max_score = max(joined, key=lambda x: x[1])
|
| 93 |
+
res.append(max_score)
|
| 94 |
+
|
| 95 |
+
res
|
| 96 |
+
# [('anger', 0.9745745062828064), ('love', 0.9884329438209534)]
|
| 97 |
+
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
# Categories Explanation
|
| 101 |
+
|
| 102 |
+
<details>
|
| 103 |
+
<summary>Click to expand!</summary>
|
| 104 |
+
|
| 105 |
+
- OTHER: Responses that do not fit into any predefined categories or are outside the scope of the specific interaction types listed.
|
| 106 |
+
|
| 107 |
+
- agrees_praising_thanking: When the user agrees with the provided information, offers praise, or expresses gratitude.
|
| 108 |
+
|
| 109 |
+
- asks_source: The user requests the source of the information or the basis for the answer provided.
|
| 110 |
+
|
| 111 |
+
- continue: Indicates a prompt for the conversation to proceed or continue without a specific directional change.
|
| 112 |
+
|
| 113 |
+
- continue_or_finnish_code: Signals either to continue with the current line of discussion or code execution, or to conclude it.
|
| 114 |
+
|
| 115 |
+
- improve_or_modify_answer: The user requests an improvement or modification to the provided answer.
|
| 116 |
+
|
| 117 |
+
- lack_of_understandment: Reflects the user's or agent confusion or lack of understanding regarding the information provided.
|
| 118 |
+
|
| 119 |
+
- model_wrong_or_try_again: Indicates that the model's response was incorrect or unsatisfactory, suggesting a need to attempt another answer.
|
| 120 |
+
|
| 121 |
+
- more_listing_or_expand: The user requests further elaboration, expansion from the given list by the agent.
|
| 122 |
+
|
| 123 |
+
- repeat_answers_or_question: The need to reiterate a previous answer or question.
|
| 124 |
+
|
| 125 |
+
- request_example: The user asks for examples to better understand the concept or answer provided.
|
| 126 |
+
|
| 127 |
+
- user_complains_repetition: The user notes that the information or responses are repetitive, indicating a need for new or different content.
|
| 128 |
+
|
| 129 |
+
- user_doubts_answer: The user expresses skepticism or doubt regarding the accuracy or validity of the provided answer.
|
| 130 |
+
|
| 131 |
+
- user_goodbye: The user says goodbye to the agent.
|
| 132 |
+
|
| 133 |
+
- user_reminds_question: The user reiterates the question.
|
| 134 |
+
|
| 135 |
+
- user_wants_agent_to_answer: The user explicitly requests a response from the agent, when the agent refuses to do so.
|
| 136 |
+
|
| 137 |
+
- user_wants_explanation: The user seeks an explanation behind the information or answer provided.
|
| 138 |
+
|
| 139 |
+
- user_wants_more_detail: Indicates the user's desire for more comprehensive or detailed information on the topic.
|
| 140 |
+
|
| 141 |
+
- user_wants_shorter_longer_answer: The user requests that the answer be condensed or expanded to better meet their informational needs.
|
| 142 |
+
|
| 143 |
+
- user_wants_simplier_explanation: The user seeks a simpler, more easily understood explanation.
|
| 144 |
+
|
| 145 |
+
- user_wants_yes_or_no: The user is asking for a straightforward affirmative or negative answer, without additional detail or explanation.
|
| 146 |
+
</details>
|
| 147 |
+
|
| 148 |
+
<br>
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Metrics in our private test dataset
|
| 152 |
+
| Model (params) | Loss | Accuracy | F1 |
|
| 153 |
+
|--------------------|-------------|----------|--------|
|
| 154 |
+
| minuva/MiniLMv2-userflow-v2 (33M) | 0.6738 | 0.7236 | 0.7313 |
|
| 155 |
+
| minuva/MiniLMv2-userflow-v2-onnx (33M) | - | 0.7195 | 0.7189 |
|
| 156 |
+
|