---
library_name: vllm
language:
- en
- fr
- es
- de
- it
- pt
- nl
- zh
- ja
- ko
- ar
license: apache-2.0
inference: false
base_model:
- mistralai/Ministral-3-14B-Base-2512
extra_gated_description: >-
If you want to learn more about how we process your personal data, please read
our Privacy Policy.
tags:
- mistral-common
---
# Ministral 3 14B Reasoning 2512
The largest model in the Ministral 3 family, **Ministral 3 14B** offers frontier capabilities and performance comparable to its larger [Mistral Small 3.2 24B](https://huggingface.co/mistralai/Mistral-Small-3.2-Instruct-2506) counterpart. A powerful and efficient language model with vision capabilities.
This model is the reasoning post-trained version, trained for reasoning tasks, making it ideal for math, coding and stem related use cases.
The Ministral 3 family is designed for edge deployment, capable of running on a wide range of hardware. Ministral 3 14B can even be deployed locally, capable of fitting in 32GB of VRAM in BF16, and less than 24GB of RAM/VRAM when quantized.
## Key Features
Ministral 3 14B consists of two main architectural components:
- **13.5B Language Model**
- **0.4B Vision Encoder**
The Ministral 3 14B Reasoning model offers the following capabilities:
- **Vision**: Enables the model to analyze images and provide insights based on visual content, in addition to text.
- **Multilingual**: Supports dozens of languages, including English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Arabic.
- **System Prompt**: Maintains strong adherence and support for system prompts.
- **Agentic**: Offers best-in-class agentic capabilities with native function calling and JSON outputting.
- **Reasoning**: Excels at complex, multi-step reasoning and dynamic problem-solving.
- **Edge-Optimized**: Delivers best-in-class performance at a small scale, deployable anywhere.
- **Apache 2.0 License**: Open-source license allowing usage and modification for both commercial and non-commercial purposes.
- **Large Context Window**: Supports a 256k context window.
### Use Cases
Private AI deployments where advanced capabilities meet practical hardware constraints:
- Private/custom chat and AI assistant deployments in constrained environments
- Advanced local agentic use cases
- Fine-tuning and specialization
- And more...
Bringing advanced AI capabilities to most environments.
### Recommended Settings
We recommend deploying with the following best practices:
- System Prompt: Use our provided [system prompt](https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512/blob/main/SYSTEM_PROMPT.txt), and append it to your custom system prompt to define a clear environment and use case, including guidance on how to effectively leverage tools in agentic systems.
- Multi-turn Traces: We highly recommend keeping the reasoning traces in context.
- Sampling Parameters: Use a **temperature of 1** for most environments ; Different temperatures may be explored for different use cases - developers are encouraged to experiment with alternative settings.
- Tools: Keep the set of tools well-defined and limit their number to the minimum required for the use case - Avoiding overloading the model with an excessive number of tools.
- Vision: When deploying with vision capabilities, we recommend maintaining an aspect ratio close to 1:1 (width-to-height) for images. Avoiding the use of overly thin or wide images - crop them as needed to ensure optimal performance.
## Ministral 3 Family
| Model Name | Type | Precision | Link |
|--------------------------------|--------------------|-----------|------------------------------------------------------------------------------------------|
| Ministral 3 3B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Base-2512) |
| Ministral 3 3B Instruct 2512 | Instruct post-trained | FP8 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512) |
| Ministral 3 3B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512) |
| Ministral 3 8B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Base-2512) |
| Ministral 3 8B Instruct 2512 | Instruct post-trained | FP8 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512) |
| Ministral 3 8B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512) |
| Ministral 3 14B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Base-2512) |
| Ministral 3 14B Instruct 2512 | Instruct post-trained | FP8 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512) |
| **Ministral 3 14B Reasoning 2512** | **Reasoning capable** | **BF16** | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512) |
Other formats available [here](https://huggingface.co/collections/mistralai/ministral-3-additional-checkpoints).
## Benchmark Results
We compare Ministral 3 to similar sized models.
### Reasoning
| Model | AIME25 | AIME24 | GPQA Diamond | LiveCodeBench |
|---------------------------|-------------|-------------|--------------|---------------|
| **Ministral 3 14B** | 0.850| 0.898| 0.712 | 0.646 |
| Qwen3-14B (Thinking) | 0.737 | 0.837 | 0.663 | 0.593 |
| | | | | |
| **Ministral 3 8B** | 0.787 | 0.860| 0.668 | 0.616 |
| Qwen3-VL-8B-Thinking | 0.798| 0.860| 0.671 | 0.580 |
| | | | | |
| **Ministral 3 3B** | 0.721| 0.775| 0.534 | 0.548 |
| Qwen3-VL-4B-Thinking | 0.697 | 0.729 | 0.601 | 0.513 |
### Instruct
| Model | Arena Hard | WildBench | MATH Maj@1 | MM MTBench |
|---------------------------|-------------|------------|-------------|------------------|
| **Ministral 3 14B** | 0.551| 68.5| 0.904| 8.49 |
| Qwen3 14B (Non-Thinking) | 0.427 | 65.1 | 0.870 | NOT MULTIMODAL |
| Gemma3-12B-Instruct | 0.436 | 63.2 | 0.854 | 6.70 |
| | | | | |
| **Ministral 3 8B** | 0.509 | 66.8| 0.876 | 8.08 |
| Qwen3-VL-8B-Instruct | 0.528| 66.3 | 0.946| 8.00 |
| | | | | |
| **Ministral 3 3B** | 0.305 | 56.8| 0.830 | 7.83 |
| Qwen3-VL-4B-Instruct | 0.438| 56.8| 0.900| 8.01 |
| Qwen3-VL-2B-Instruct | 0.163 | 42.2 | 0.786 | 6.36 |
| Gemma3-4B-Instruct | 0.318 | 49.1 | 0.759 | 5.23 |
### Base
| Model | Multilingual MMLU | MATH CoT 2-Shot | AGIEval 5-shot | MMLU Redux 5-shot | MMLU 5-shot | TriviaQA 5-shot |
|---------------------|-------------------|-----------------|----------------|-------------------|-------------|-----------------|
| **Ministral 3 14B** | 0.742 | 0.676 | 0.648 | 0.820 | 0.794 | 0.749 |
| Qwen3 14B Base | 0.754 | 0.620 | 0.661 | 0.837 | 0.804| 0.703 |
| Gemma 3 12B Base | 0.690 | 0.487 | 0.587 | 0.766 | 0.745 | 0.788 |
| | | | | | | |
| **Ministral 3 8B** | 0.706 | 0.626 | 0.591 | 0.793 | 0.761| 0.681 |
| Qwen 3 8B Base | 0.700 | 0.576 | 0.596 | 0.794 | 0.760 | 0.639 |
| | | | | | | |
| **Ministral 3 3B** | 0.652 | 0.601 | 0.511 | 0.735 | 0.707 | 0.592 |
| Qwen 3 4B Base | 0.677 | 0.405 | 0.570 | 0.759 | 0.713| 0.530 |
| Gemma 3 4B Base | 0.516 | 0.294 | 0.430 | 0.626 | 0.589 | 0.640 |
## Usage
The model can be used with the following frameworks;
- [`vllm`](https://github.com/vllm-project/vllm): See [here](#vllm)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
### vLLM
We recommend using this model with [vLLM](https://github.com/vllm-project/vllm).
#### Installation
Make sure to install **vllm >= 0.12.0**:
```
pip install vllm --upgrade
```
Doing so should automatically install [`mistral_common >= 1.8.6`](https://github.com/mistralai/mistral-common/releases/tag/v1.8.6).
To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest).
#### Serve
To fully exploit the `Ministral-3-14B-Reasoning-2512` we recommed using 2xH200 GPUs for deployment due to its large context. However if you don't need a large context, you can fall back to a single GPU.
A simple launch command is:
```bash
vllm serve mistralai/Ministral-3-14B-Reasoning-2512 \
--tensor-parallel-size 2 \
--tokenizer_mode mistral --config_format mistral --load_format mistral \
--enable-auto-tool-choice --tool-call-parser mistral \
--reasoning-parser mistral
```
Key parameter notes:
* enable-auto-tool-choice: Required when enabling tool usage.
* tool-call-parser mistral: Required when enabling tool usage.
* reasoning-parser mistral: Required when enabling reasoning.
Additional flags:
* You can set `--max-model-len` to preserve memory. By default it is set to `262144` which is quite large but not necessary for most scenarios.
* You can set `--max-num-batched-tokens` to balance throughput and latency, higher means higher throughput but higher latency.
#### Usage of the model
Here we assume that the model `mistralai/Ministral-3-8B-Reasoning-2512` is served and you can ping it to the domain `localhost` with the port `8000` which is the default for vLLM.
Vision Reasoning
Let's see if the Ministral 3 model knows when to pick a fight !
```python
from typing import Any
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.7
TOP_P = 0.95
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> dict[str, Any]:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
index_begin_think = system_prompt.find("[THINK]")
index_end_think = system_prompt.find("[/THINK]")
return {
"role": "system",
"content": [
{"type": "text", "text": system_prompt[:index_begin_think]},
{
"type": "thinking",
"thinking": system_prompt[
index_begin_think + len("[THINK]") : index_end_think
],
"closed": True,
},
{
"type": "text",
"text": system_prompt[index_end_think + len("[/THINK]") :],
},
],
}
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
SYSTEM_PROMPT,
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
stream = client.chat.completions.create(
model=model,
messages=messages,
stream=True,
temperature=TEMP,
top_p=TOP_P,
max_tokens=MAX_TOK,
)
print("client: Start streaming chat completions...:\n")
printed_reasoning_content = False
answer = []
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
if hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("Start reasoning:\n", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content is not None:
# Extract and print the content
if not reasoning_content and printed_reasoning_content:
answer.extend(content)
print(content, end="", flush=True)
if answer:
print("\n\n=============\nAnswer\n=============\n")
print("".join(answer))
else:
print("\n\n=============\nNo Answer\n=============\n")
print(
"No answer was generated by the model, probably because the maximum number of tokens was reached."
)
```
Now we'll make it compute some maths !
```python
from typing import Any
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.7
TOP_P = 0.95
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> dict[str, Any]:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
index_begin_think = system_prompt.find("[THINK]")
index_end_think = system_prompt.find("[/THINK]")
return {
"role": "system",
"content": [
{"type": "text", "text": system_prompt[:index_begin_think]},
{
"type": "thinking",
"thinking": system_prompt[
index_begin_think + len("[THINK]") : index_end_think
],
"closed": True,
},
{
"type": "text",
"text": system_prompt[index_end_think + len("[/THINK]") :],
},
],
}
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://i.ytimg.com/vi/5Y3xLHeyKZU/hqdefault.jpg"
messages = [
SYSTEM_PROMPT,
{
"role": "user",
"content": [
{
"type": "text",
"text": "Solve the equations. If they contain only numbers, use your calculator, else only think. Answer in the language of the image.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
stream = client.chat.completions.create(
model=model,
messages=messages,
stream=True,
temperature=TEMP,
top_p=TOP_P,
max_tokens=MAX_TOK,
)
print("client: Start streaming chat completions...:\n")
printed_reasoning_content = False
answer = []
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
if hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("Start reasoning:\n", end="", flush=True)
print(reasoning_content, end="", flush=True)
if content is not None:
# Extract and print the content
if not reasoning_content and printed_reasoning_content:
answer.extend(content)
print(content, end="", flush=True)
if answer:
print("\n\n=============\nAnswer\n=============\n")
print("".join(answer))
else:
print("\n\n=============\nNo Answer\n=============\n")
print(
"No answer was generated by the model, probably because the maximum number of tokens was reached."
)
```
Text-Only Request
Let's do more maths and leave it up to the model to figure out how to achieve a result.
```python
from typing import Any
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.7
TOP_P = 0.95
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> dict[str, Any]:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
index_begin_think = system_prompt.find("[THINK]")
index_end_think = system_prompt.find("[/THINK]")
return {
"role": "system",
"content": [
{"type": "text", "text": system_prompt[:index_begin_think]},
{
"type": "thinking",
"thinking": system_prompt[
index_begin_think + len("[THINK]") : index_end_think
],
"closed": True,
},
{
"type": "text",
"text": system_prompt[index_end_think + len("[/THINK]") :],
},
],
}
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
query = "Use each number in 2,5,6,3 exactly once, along with any combination of +, -, ×, ÷ (and parentheses for grouping), to make the number 24."
messages = [
SYSTEM_PROMPT,
{"role": "user", "content": query}
]
stream = client.chat.completions.create(
model=model,
messages=messages,
stream=True,
temperature=TEMP,
top_p=TOP_P,
max_tokens=MAX_TOK,
)
print("client: Start streaming chat completions...:\n")
printed_reasoning_content = False
answer = []
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
if hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("Start reasoning:\n", end="", flush=True)
print(reasoning_content, end="", flush=True)
if content is not None:
# Extract and print the content
if not reasoning_content and printed_reasoning_content:
answer.extend(content)
print(content, end="", flush=True)
if answer:
print("\n\n=============\nAnswer\n=============\n")
print("".join(answer))
else:
print("\n\n=============\nNo Answer\n=============\n")
print("No answer was generated by the model, probably because the maximum number of tokens was reached.")
```
### Transformers
You can also use Ministral 3 3B Reasoning 2512 with `Transformers` !
Make sure to install `Transformers` from its first v5 release candidate or from "main":
```
pip install transformers==5.0.0rc0
```
To make the best use of our model with `Transformers` make sure to have [installed](https://github.com/mistralai/mistral-common) `mistral-common >= 1.8.6` to use our tokenizer.
```bash
pip install mistral-common --upgrade
```
Then load our tokenizer along with the model and generate:
Python snippet
```python
import torch
from transformers import Mistral3ForConditionalGeneration, MistralCommonBackend
model_id = "mistralai/Ministral-3-14B-Reasoning-2512"
tokenizer = MistralCommonBackend.from_pretrained(model_id)
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map="auto"
)
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
tokenized = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True)
tokenized["input_ids"] = tokenized["input_ids"].to(device="cuda")
tokenized["pixel_values"] = tokenized["pixel_values"].to(dtype=torch.bfloat16, device="cuda")
image_sizes = [tokenized["pixel_values"].shape[-2:]]
output = model.generate(
**tokenized,
image_sizes=image_sizes,
max_new_tokens=8092,
)[0]
decoded_output = tokenizer.decode(output[len(tokenized["input_ids"][0]):])
print(decoded_output)
```
## License
This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0.txt).
*You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.*