Update README.md
Browse files
README.md
CHANGED
|
@@ -21,18 +21,18 @@ datasets:
|
|
| 21 |
|
| 22 |
# NeuralHermes 2.5 - Mistral 7B
|
| 23 |
|
| 24 |
-
NeuralHermes is
|
| 25 |
|
| 26 |
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
|
| 27 |
|
| 28 |
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
* GGUF
|
| 33 |
-
* AWQ
|
| 34 |
-
* GPTQ
|
| 35 |
-
* EXL2
|
| 36 |
* 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2
|
| 37 |
* 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2
|
| 38 |
* 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2
|
|
@@ -97,7 +97,6 @@ sequences = pipeline(
|
|
| 97 |
print(sequences[0]['generated_text'])
|
| 98 |
```
|
| 99 |
|
| 100 |
-
|
| 101 |
## Training hyperparameters
|
| 102 |
|
| 103 |
**LoRA**:
|
|
|
|
| 21 |
|
| 22 |
# NeuralHermes 2.5 - Mistral 7B
|
| 23 |
|
| 24 |
+
NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on most benchmarks (see results).
|
| 25 |
|
| 26 |
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
|
| 27 |
|
| 28 |
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
|
| 29 |
|
| 30 |
+
## Quantized models
|
| 31 |
|
| 32 |
+
* **GGUF**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF
|
| 33 |
+
* **AWQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ
|
| 34 |
+
* **GPTQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ
|
| 35 |
+
* **EXL2**:
|
| 36 |
* 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2
|
| 37 |
* 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2
|
| 38 |
* 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2
|
|
|
|
| 97 |
print(sequences[0]['generated_text'])
|
| 98 |
```
|
| 99 |
|
|
|
|
| 100 |
## Training hyperparameters
|
| 101 |
|
| 102 |
**LoRA**:
|