Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- mlabonne/Evol-Instruct-Python-26k
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
---
|
| 7 |
+
# 🦙💻 PyLlama-7b
|
| 8 |
+
|
| 9 |
+
📝 [Article](https://medium.com/@mlabonne/a-beginners-guide-to-llm-fine-tuning-4bae7d4da672)
|
| 10 |
+
|
| 11 |
+
<center><img src="https://i.imgur.com/5m7OJQU.png" width="300"></center>
|
| 12 |
+
|
| 13 |
+
This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-26k).
|
| 14 |
+
|
| 15 |
+
## 🔧 Training
|
| 16 |
+
|
| 17 |
+
It was trained on an RTX 3090 in 9h 52m 34s with the following configuration file:
|
| 18 |
+
|
| 19 |
+
```yaml
|
| 20 |
+
base_model: codellama/CodeLlama-7b-hf
|
| 21 |
+
base_model_config: codellama/CodeLlama-7b-hf
|
| 22 |
+
model_type: LlamaForCausalLM
|
| 23 |
+
tokenizer_type: LlamaTokenizer
|
| 24 |
+
is_llama_derived_model: true
|
| 25 |
+
hub_model_id: PyLlama-7b
|
| 26 |
+
|
| 27 |
+
load_in_8bit: false
|
| 28 |
+
load_in_4bit: true
|
| 29 |
+
strict: false
|
| 30 |
+
|
| 31 |
+
datasets:
|
| 32 |
+
- path: mlabonne/Evol-Instruct-Python-26k
|
| 33 |
+
type: alpaca
|
| 34 |
+
dataset_prepared_path: last_run_prepared
|
| 35 |
+
val_set_size: 0.02
|
| 36 |
+
output_dir: ./qlora-out
|
| 37 |
+
|
| 38 |
+
adapter: qlora
|
| 39 |
+
lora_model_dir:
|
| 40 |
+
|
| 41 |
+
sequence_len: 2048
|
| 42 |
+
sample_packing: true
|
| 43 |
+
|
| 44 |
+
lora_r: 32
|
| 45 |
+
lora_alpha: 16
|
| 46 |
+
lora_dropout: 0.05
|
| 47 |
+
lora_target_modules:
|
| 48 |
+
lora_target_linear: true
|
| 49 |
+
lora_fan_in_fan_out:
|
| 50 |
+
|
| 51 |
+
wandb_project: axolotl
|
| 52 |
+
wandb_entity:
|
| 53 |
+
wandb_watch:
|
| 54 |
+
wandb_run_id:
|
| 55 |
+
wandb_log_model:
|
| 56 |
+
|
| 57 |
+
gradient_accumulation_steps: 1
|
| 58 |
+
micro_batch_size: 10
|
| 59 |
+
num_epochs: 3
|
| 60 |
+
optimizer: paged_adamw_32bit
|
| 61 |
+
lr_scheduler: cosine
|
| 62 |
+
learning_rate: 0.0002
|
| 63 |
+
|
| 64 |
+
train_on_inputs: false
|
| 65 |
+
group_by_length: false
|
| 66 |
+
bf16: true
|
| 67 |
+
fp16: false
|
| 68 |
+
tf32: false
|
| 69 |
+
|
| 70 |
+
gradient_checkpointing: true
|
| 71 |
+
early_stopping_patience:
|
| 72 |
+
resume_from_checkpoint:
|
| 73 |
+
local_rank:
|
| 74 |
+
logging_steps: 1
|
| 75 |
+
xformers_attention:
|
| 76 |
+
flash_attention: true
|
| 77 |
+
|
| 78 |
+
warmup_steps: 100
|
| 79 |
+
eval_steps: 0.01
|
| 80 |
+
save_strategy: epoch
|
| 81 |
+
save_steps:
|
| 82 |
+
debug:
|
| 83 |
+
deepspeed:
|
| 84 |
+
weight_decay: 0.0
|
| 85 |
+
fsdp:
|
| 86 |
+
fsdp_config:
|
| 87 |
+
special_tokens:
|
| 88 |
+
bos_token: "<s>"
|
| 89 |
+
eos_token: "</s>"
|
| 90 |
+
unk_token: "<unk>"
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
Here are the loss curves:
|
| 94 |
+
|
| 95 |
+
[TO ADD]
|
| 96 |
+
|
| 97 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 98 |
+
|
| 99 |
+
## 💻 Usage
|
| 100 |
+
|
| 101 |
+
``` python
|
| 102 |
+
# pip install transformers accelerate
|
| 103 |
+
|
| 104 |
+
from transformers import AutoTokenizer
|
| 105 |
+
import transformers
|
| 106 |
+
import torch
|
| 107 |
+
|
| 108 |
+
model = "mlabonne/PyLlama-7b"
|
| 109 |
+
prompt = "Your prompt"
|
| 110 |
+
|
| 111 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
| 112 |
+
pipeline = transformers.pipeline(
|
| 113 |
+
"text-generation",
|
| 114 |
+
model=model,
|
| 115 |
+
torch_dtype=torch.float16,
|
| 116 |
+
device_map="auto",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
sequences = pipeline(
|
| 120 |
+
f'{prompt}',
|
| 121 |
+
do_sample=True,
|
| 122 |
+
top_k=10,
|
| 123 |
+
num_return_sequences=1,
|
| 124 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 125 |
+
max_length=200,
|
| 126 |
+
)
|
| 127 |
+
for seq in sequences:
|
| 128 |
+
print(f"Result: {seq['generated_text']}")
|
| 129 |
+
```
|