|
|
""" |
|
|
Modified MIT License |
|
|
|
|
|
Software Copyright© 2025 IQuest Research |
|
|
|
|
|
Our only modification is that, if the Software (or any derivative works |
|
|
thereof) is used for any of your commercial products or services, you shall |
|
|
prominently display "IQuest Coder" on the user interface of such product or |
|
|
service. |
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
|
of this software and associated documentation files (the "Software"), to deal |
|
|
in the Software without restriction, including without limitation the rights |
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
|
copies of the Software, and to permit persons to whom the Software is |
|
|
furnished to do so, subject to the following conditions: |
|
|
|
|
|
The above copyright notice and this permission notice shall be included in all |
|
|
copies or substantial portions of the Software. |
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
|
""" |
|
|
|
|
|
import math |
|
|
from typing import Any, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint |
|
|
from torch import nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.generation.utils import GenerationMixin |
|
|
from transformers.utils import ( |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
|
|
|
from .configuration_iquestloopcoder import IQuestLoopCoderConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "IQuestLoopCoderConfig" |
|
|
|
|
|
|
|
|
class IQuestLoopCoderCache(Cache): |
|
|
"""Cache implementation for IQuestLoopCoder that manages shared and local KV caches. |
|
|
|
|
|
- shared_key_cache/shared_value_cache: Stores KV from Loop 1 (global context) |
|
|
- local_key_cache/local_value_cache: Stores KV from Loop 2+ (local window, only window_size tokens) |
|
|
""" |
|
|
|
|
|
def __init__(self, window_size: int, num_layers: int): |
|
|
|
|
|
self.window_size = window_size |
|
|
self.num_layers = num_layers |
|
|
|
|
|
|
|
|
self.shared_key_cache: List[Optional[torch.Tensor]] = [None] * num_layers |
|
|
self.shared_value_cache: List[Optional[torch.Tensor]] = [None] * num_layers |
|
|
|
|
|
|
|
|
self.local_key_cache: List[Optional[torch.Tensor]] = [None] * num_layers |
|
|
self.local_value_cache: List[Optional[torch.Tensor]] = [None] * num_layers |
|
|
|
|
|
self.layers: List[Any] = [] |
|
|
self._seen_tokens = 0 |
|
|
|
|
|
def update_shared( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[dict] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Update shared cache (Loop 1 KV).""" |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
raise ValueError(f"layer_idx must be in [0, {self.num_layers}), got {layer_idx}") |
|
|
|
|
|
cached_key = self.shared_key_cache[layer_idx] |
|
|
cached_value = self.shared_value_cache[layer_idx] |
|
|
|
|
|
if cached_key is None: |
|
|
self.shared_key_cache[layer_idx] = key_states |
|
|
self.shared_value_cache[layer_idx] = value_states |
|
|
else: |
|
|
if ( |
|
|
key_states.shape[0] != cached_key.shape[0] |
|
|
or key_states.shape[1] != cached_key.shape[1] |
|
|
or key_states.shape[3] != cached_key.shape[3] |
|
|
): |
|
|
raise ValueError( |
|
|
"Cached and incoming key/value tensors must match on batch, head, and head_dim dimensions." |
|
|
) |
|
|
assert cached_value is not None |
|
|
self.shared_key_cache[layer_idx] = torch.cat([cached_key, key_states], dim=2) |
|
|
self.shared_value_cache[layer_idx] = torch.cat([cached_value, value_states], dim=2) |
|
|
|
|
|
result_key = self.shared_key_cache[layer_idx] |
|
|
result_value = self.shared_value_cache[layer_idx] |
|
|
assert result_key is not None and result_value is not None |
|
|
|
|
|
|
|
|
self._seen_tokens = result_key.shape[2] |
|
|
return result_key, result_value |
|
|
|
|
|
def update_local( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[dict] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Update local cache (Loop 2+ KV) with sliding window management. |
|
|
|
|
|
If the cache is full (window_size tokens), remove the oldest token and add the new one. |
|
|
""" |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
raise ValueError(f"layer_idx must be in [0, {self.num_layers}), got {layer_idx}") |
|
|
|
|
|
cached_key = self.local_key_cache[layer_idx] |
|
|
cached_value = self.local_value_cache[layer_idx] |
|
|
|
|
|
if cached_key is None: |
|
|
|
|
|
self.local_key_cache[layer_idx] = key_states |
|
|
self.local_value_cache[layer_idx] = value_states |
|
|
else: |
|
|
if ( |
|
|
key_states.shape[0] != cached_key.shape[0] |
|
|
or key_states.shape[1] != cached_key.shape[1] |
|
|
or key_states.shape[3] != cached_key.shape[3] |
|
|
): |
|
|
raise ValueError( |
|
|
"Cached and incoming key/value tensors must match on batch, head, and head_dim dimensions." |
|
|
) |
|
|
assert cached_value is not None |
|
|
|
|
|
|
|
|
current_len = cached_key.shape[2] |
|
|
if current_len >= self.window_size: |
|
|
|
|
|
self.local_key_cache[layer_idx] = torch.cat([cached_key[:, :, 1:, :], key_states], dim=2) |
|
|
self.local_value_cache[layer_idx] = torch.cat([cached_value[:, :, 1:, :], value_states], dim=2) |
|
|
else: |
|
|
|
|
|
self.local_key_cache[layer_idx] = torch.cat([cached_key, key_states], dim=2) |
|
|
self.local_value_cache[layer_idx] = torch.cat([cached_value, value_states], dim=2) |
|
|
|
|
|
result_key = self.local_key_cache[layer_idx] |
|
|
result_value = self.local_value_cache[layer_idx] |
|
|
assert result_key is not None and result_value is not None |
|
|
|
|
|
return result_key, result_value |
|
|
|
|
|
def get_shared(self, layer_idx: int) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
|
"""Get shared cache for a layer.""" |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
return None, None |
|
|
return self.shared_key_cache[layer_idx], self.shared_value_cache[layer_idx] |
|
|
|
|
|
def get_local(self, layer_idx: int) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
|
"""Get local cache for a layer.""" |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
return None, None |
|
|
return self.local_key_cache[layer_idx], self.local_value_cache[layer_idx] |
|
|
|
|
|
def update( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[dict] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Default update method (for compatibility, updates shared cache).""" |
|
|
return self.update_shared(key_states, value_states, layer_idx, cache_kwargs) |
|
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
|
"""Get sequence length from shared cache.""" |
|
|
if layer_idx is None: |
|
|
layer_idx = 0 |
|
|
if layer_idx < 0 or layer_idx >= len(self.shared_key_cache): |
|
|
return 0 |
|
|
cached = self.shared_key_cache[layer_idx] |
|
|
if cached is None: |
|
|
return 0 |
|
|
return cached.shape[2] |
|
|
|
|
|
def get_max_length(self) -> Optional[int]: |
|
|
return None |
|
|
|
|
|
def get_usable_length( |
|
|
self, new_seq_length: int, layer_idx: Optional[int] = 0 |
|
|
) -> int: |
|
|
return self.get_seq_length(layer_idx) |
|
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor) -> None: |
|
|
"""Reorder cache for beam search.""" |
|
|
for layer_idx in range(self.num_layers): |
|
|
if self.shared_key_cache[layer_idx] is not None: |
|
|
device = self.shared_key_cache[layer_idx].device |
|
|
self.shared_key_cache[layer_idx] = self.shared_key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
self.shared_value_cache[layer_idx] = self.shared_value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
|
|
if self.local_key_cache[layer_idx] is not None: |
|
|
device = self.local_key_cache[layer_idx].device |
|
|
self.local_key_cache[layer_idx] = self.local_key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
self.local_value_cache[layer_idx] = self.local_value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
|
|
@property |
|
|
def is_compileable(self) -> bool: |
|
|
return False |
|
|
|
|
|
def clear(self) -> None: |
|
|
"""Clear all caches.""" |
|
|
logger.debug("Clearing IQuestLoopCoderCache") |
|
|
self.shared_key_cache = [None] * self.num_layers |
|
|
self.shared_value_cache = [None] * self.num_layers |
|
|
self.local_key_cache = [None] * self.num_layers |
|
|
self.local_value_cache = [None] * self.num_layers |
|
|
self._seen_tokens = 0 |
|
|
|
|
|
|
|
|
class IQuestLoopCoderRMSNorm(nn.Module): |
|
|
"""RMS Normalization layer.""" |
|
|
|
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
|
class IQuestLoopCoderRotaryEmbedding(nn.Module): |
|
|
"""Rotary Position Embedding (RoPE).""" |
|
|
|
|
|
def __init__(self, dim, max_position_embeddings=8192, base=500000.0, device=None, scaling_factor=1.0): |
|
|
super().__init__() |
|
|
self.scaling_factor = scaling_factor |
|
|
self.dim = dim |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.base = base |
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.max_seq_len_cached = max_position_embeddings |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids): |
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
"""Expand KV heads to match query heads for GQA.""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
class IQuestLoopCoderMLP(nn.Module): |
|
|
"""MLP with SwiGLU activation.""" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
|
class LoopGateProjection(nn.Module): |
|
|
"""Gate projection for mixed attention in Loop 2+. |
|
|
|
|
|
Computes: g = sigmoid(linear(Q)) for each head independently. |
|
|
This gate determines how much to use Loop1's KV (global) vs current loop's KV (local). |
|
|
""" |
|
|
|
|
|
def __init__(self, num_heads: int, head_dim: int): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = head_dim |
|
|
|
|
|
|
|
|
self.weight = nn.Parameter(torch.zeros(num_heads, head_dim)) |
|
|
self.bias = nn.Parameter(torch.zeros(num_heads)) |
|
|
|
|
|
def forward(self, query: torch.Tensor) -> torch.Tensor: |
|
|
"""Compute gate values from query tensor. |
|
|
|
|
|
Args: |
|
|
query: [batch, num_heads, seq_len, head_dim] |
|
|
|
|
|
Returns: |
|
|
gate: [batch, num_heads, seq_len, 1] |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gate_logits = torch.einsum('bhsd,hd->bhs', query, self.weight) |
|
|
gate_logits = gate_logits + self.bias[None, :, None] |
|
|
gate = torch.sigmoid(gate_logits) |
|
|
return gate.unsqueeze(-1) |
|
|
|
|
|
|
|
|
class IQuestLoopCoderAttention(nn.Module): |
|
|
"""Multi-head attention with GQA support.""" |
|
|
|
|
|
def __init__(self, config: IQuestLoopCoderConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = config.head_dim |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) |
|
|
|
|
|
self.rotary_emb = IQuestLoopCoderRotaryEmbedding( |
|
|
self.head_dim, |
|
|
max_position_embeddings=self.max_position_embeddings, |
|
|
base=self.rope_theta, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights if output_attentions else None, past_key_value |
|
|
|
|
|
def forward_with_external_kv( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
external_key: torch.Tensor, |
|
|
external_value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
sliding_window: Optional[int] = None, |
|
|
) -> torch.Tensor: |
|
|
"""Forward pass using external K, V (for Loop 2+ mixed attention). |
|
|
|
|
|
Args: |
|
|
hidden_states: Input for computing Q |
|
|
external_key: Pre-computed K (already with RoPE applied) |
|
|
external_value: Pre-computed V |
|
|
attention_mask: Causal attention mask |
|
|
position_ids: Position IDs |
|
|
sliding_window: If set, apply sliding window attention |
|
|
|
|
|
Returns: |
|
|
Attention output [batch, seq_len, num_heads, head_dim] |
|
|
""" |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
cos, sin = self.rotary_emb(query_states, position_ids) |
|
|
query_states = (query_states * cos.unsqueeze(1)) + (rotate_half(query_states) * sin.unsqueeze(1)) |
|
|
|
|
|
|
|
|
key_states = external_key |
|
|
value_states = external_value |
|
|
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
|
|
|
if sliding_window is not None and q_len > sliding_window: |
|
|
|
|
|
|
|
|
seq_len = key_states.shape[2] |
|
|
row_idx = torch.arange(q_len, device=query_states.device).unsqueeze(1) |
|
|
col_idx = torch.arange(seq_len, device=query_states.device).unsqueeze(0) |
|
|
window_mask = (col_idx > row_idx) | (col_idx < row_idx - sliding_window + 1) |
|
|
window_mask = window_mask.unsqueeze(0).unsqueeze(0) |
|
|
attn_weights = attn_weights.masked_fill(window_mask, float('-inf')) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
return attn_output |
|
|
|
|
|
def get_qkv( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Get Q, K, V tensors with RoPE applied. |
|
|
|
|
|
Returns: |
|
|
query: [batch, num_heads, seq_len, head_dim] |
|
|
key: [batch, num_kv_heads, seq_len, head_dim] |
|
|
value: [batch, num_kv_heads, seq_len, head_dim] |
|
|
""" |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
return query_states, key_states, value_states |
|
|
|
|
|
def forward_decode_loop1( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
past_shared_key: Optional[torch.Tensor], |
|
|
past_shared_value: Optional[torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Forward pass for Loop 1 in decode stage. |
|
|
|
|
|
Args: |
|
|
hidden_states: Current hidden states [batch, 1, hidden_size] |
|
|
past_shared_key: Past shared keys from cache [batch, num_kv_heads, past_len, head_dim] |
|
|
past_shared_value: Past shared values from cache [batch, num_kv_heads, past_len, head_dim] |
|
|
attention_mask: Causal attention mask |
|
|
position_ids: Position IDs |
|
|
cache_position: Cache position |
|
|
|
|
|
Returns: |
|
|
output: Attention output [batch, 1, hidden_size] |
|
|
k1: Current key [batch, num_kv_heads, 1, head_dim] (only current token) |
|
|
v1: Current value [batch, num_kv_heads, 1, head_dim] (only current token) |
|
|
""" |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids) |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
|
|
|
k1_current = key_states |
|
|
v1_current = value_states |
|
|
|
|
|
|
|
|
if past_shared_key is not None and past_shared_value is not None: |
|
|
key_states = torch.cat([past_shared_key, key_states], dim=2) |
|
|
value_states = torch.cat([past_shared_value, value_states], dim=2) |
|
|
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.reshape(bsz, q_len, -1) |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, k1_current, v1_current |
|
|
|
|
|
def forward_decode_loop2( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
k1: torch.Tensor, |
|
|
v1: torch.Tensor, |
|
|
past_shared_key: Optional[torch.Tensor], |
|
|
past_shared_value: Optional[torch.Tensor], |
|
|
past_local_key: Optional[torch.Tensor], |
|
|
past_local_value: Optional[torch.Tensor], |
|
|
gate_proj: LoopGateProjection, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
loop_window_size: int = 64, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Forward pass for Loop 2 in decode stage with mixed attention. |
|
|
|
|
|
Args: |
|
|
hidden_states: Current hidden states [batch, 1, hidden_size] |
|
|
k1: Key from Loop 1 (current token) [batch, num_kv_heads, 1, head_dim] |
|
|
v1: Value from Loop 1 (current token) [batch, num_kv_heads, 1, head_dim] |
|
|
past_shared_key: Past shared keys from cache [batch, num_kv_heads, past_len, head_dim] |
|
|
past_shared_value: Past shared values from cache [batch, num_kv_heads, past_len, head_dim] |
|
|
past_local_key: Past local keys from cache [batch, num_kv_heads, window_len, head_dim] |
|
|
past_local_value: Past local values from cache [batch, num_kv_heads, window_len, head_dim] |
|
|
gate_proj: Gate projection module |
|
|
attention_mask: Causal attention mask |
|
|
position_ids: Position IDs |
|
|
loop_window_size: Window size for sliding window attention |
|
|
|
|
|
Returns: |
|
|
output: Attention output [batch, 1, hidden_size] |
|
|
k2: Current key [batch, num_kv_heads, 1, head_dim] |
|
|
v2: Current value [batch, num_kv_heads, 1, head_dim] |
|
|
""" |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
|
|
|
q2, k2, v2 = self.get_qkv(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
gate = gate_proj(q2) |
|
|
|
|
|
|
|
|
if past_shared_key is not None and past_shared_value is not None: |
|
|
k1_full = torch.cat([past_shared_key, k1], dim=2) |
|
|
v1_full = torch.cat([past_shared_value, v1], dim=2) |
|
|
else: |
|
|
k1_full = k1 |
|
|
v1_full = v1 |
|
|
|
|
|
|
|
|
if past_local_key is not None and past_local_value is not None: |
|
|
k2_full = torch.cat([past_local_key, k2], dim=2) |
|
|
v2_full = torch.cat([past_local_value, v2], dim=2) |
|
|
else: |
|
|
k2_full = k2 |
|
|
v2_full = v2 |
|
|
|
|
|
|
|
|
k1_expanded = repeat_kv(k1_full, self.num_key_value_groups) |
|
|
v1_expanded = repeat_kv(v1_full, self.num_key_value_groups) |
|
|
k2_expanded = repeat_kv(k2_full, self.num_key_value_groups) |
|
|
v2_expanded = repeat_kv(v2_full, self.num_key_value_groups) |
|
|
|
|
|
|
|
|
head_dim = q2.shape[-1] |
|
|
attn_weights_A = torch.matmul(q2, k1_expanded.transpose(2, 3)) / math.sqrt(head_dim) |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : k1_expanded.shape[-2]] |
|
|
attn_weights_A = attn_weights_A + causal_mask |
|
|
attn_weights_A = nn.functional.softmax(attn_weights_A, dim=-1, dtype=torch.float32).to(q2.dtype) |
|
|
attn_A = torch.matmul(attn_weights_A, v1_expanded) |
|
|
|
|
|
|
|
|
attn_weights_B = torch.matmul(q2, k2_expanded.transpose(2, 3)) / math.sqrt(head_dim) |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : k2_expanded.shape[-2]] |
|
|
attn_weights_B = attn_weights_B + causal_mask |
|
|
|
|
|
|
|
|
q_len_attn = q2.shape[2] |
|
|
k_len_attn = k2_expanded.shape[2] |
|
|
if q_len_attn <= loop_window_size: |
|
|
|
|
|
attn_weights_B = nn.functional.softmax(attn_weights_B, dim=-1, dtype=torch.float32).to(q2.dtype) |
|
|
else: |
|
|
|
|
|
row_idx = torch.arange(q_len_attn, device=q2.device).unsqueeze(1) |
|
|
col_idx = torch.arange(k_len_attn, device=q2.device).unsqueeze(0) |
|
|
window_mask = (col_idx > row_idx) | (col_idx < row_idx - loop_window_size + 1) |
|
|
window_mask = window_mask.unsqueeze(0).unsqueeze(0) |
|
|
attn_weights_B = attn_weights_B.masked_fill(window_mask, float('-inf')) |
|
|
attn_weights_B = nn.functional.softmax(attn_weights_B, dim=-1, dtype=torch.float32).to(q2.dtype) |
|
|
attn_B = torch.matmul(attn_weights_B, v2_expanded) |
|
|
|
|
|
|
|
|
mixed_attn = gate * attn_A + (1 - gate) * attn_B |
|
|
|
|
|
|
|
|
bsz, num_heads, seq_len, head_dim = mixed_attn.shape |
|
|
mixed_attn = mixed_attn.transpose(1, 2).contiguous().reshape(bsz, seq_len, -1) |
|
|
attn_output = self.o_proj(mixed_attn) |
|
|
|
|
|
return attn_output, k2, v2 |
|
|
|
|
|
|
|
|
class IQuestLoopCoderDecoderLayer(nn.Module): |
|
|
"""Transformer decoder layer.""" |
|
|
|
|
|
def __init__(self, config: IQuestLoopCoderConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.self_attn = IQuestLoopCoderAttention(config=config, layer_idx=layer_idx) |
|
|
self.mlp = IQuestLoopCoderMLP(config) |
|
|
self.input_layernorm = IQuestLoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = IQuestLoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
return outputs |
|
|
|
|
|
def forward_loop2_mixed( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
k1: torch.Tensor, |
|
|
v1: torch.Tensor, |
|
|
gate_proj: LoopGateProjection, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
loop_window_size: int = 64, |
|
|
) -> Tuple[torch.Tensor, float]: |
|
|
"""Forward pass for Loop 2+ with mixed attention. |
|
|
|
|
|
Args: |
|
|
hidden_states: Current hidden states |
|
|
k1: Key from Loop 1 [batch, num_kv_heads, seq_len, head_dim] |
|
|
v1: Value from Loop 1 [batch, num_kv_heads, seq_len, head_dim] |
|
|
gate_proj: Gate projection module for this layer |
|
|
attention_mask: Causal attention mask |
|
|
position_ids: Position IDs |
|
|
loop_window_size: Window size for sliding window attention |
|
|
|
|
|
Returns: |
|
|
output hidden states, gate mean value |
|
|
""" |
|
|
residual = hidden_states |
|
|
hidden_states_normed = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
q2, k2, v2 = self.self_attn.get_qkv(hidden_states_normed, position_ids) |
|
|
|
|
|
|
|
|
|
|
|
gate = gate_proj(q2) |
|
|
gate_mean = gate.detach().mean().item() |
|
|
|
|
|
|
|
|
k1_expanded = repeat_kv(k1, self.self_attn.num_key_value_groups) |
|
|
v1_expanded = repeat_kv(v1, self.self_attn.num_key_value_groups) |
|
|
k2_expanded = repeat_kv(k2, self.self_attn.num_key_value_groups) |
|
|
v2_expanded = repeat_kv(v2, self.self_attn.num_key_value_groups) |
|
|
|
|
|
|
|
|
attn_A = self._compute_attention(q2, k1_expanded, v1_expanded, attention_mask) |
|
|
|
|
|
|
|
|
attn_B = self._compute_attention_with_window(q2, k2_expanded, v2_expanded, attention_mask, loop_window_size) |
|
|
|
|
|
|
|
|
|
|
|
mixed_attn = gate * attn_A + (1 - gate) * attn_B |
|
|
|
|
|
|
|
|
bsz, num_heads, seq_len, head_dim = mixed_attn.shape |
|
|
mixed_attn = mixed_attn.transpose(1, 2).contiguous().reshape(bsz, seq_len, -1) |
|
|
hidden_states = self.self_attn.o_proj(mixed_attn) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states, gate_mean |
|
|
|
|
|
def _compute_attention( |
|
|
self, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
) -> torch.Tensor: |
|
|
"""Standard attention computation.""" |
|
|
head_dim = query.shape[-1] |
|
|
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(head_dim) |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
return attn_output |
|
|
|
|
|
def _compute_attention_with_window( |
|
|
self, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
window_size: int, |
|
|
) -> torch.Tensor: |
|
|
"""Attention with sliding window.""" |
|
|
q_len = query.shape[2] |
|
|
k_len = key.shape[2] |
|
|
head_dim = query.shape[-1] |
|
|
|
|
|
|
|
|
if q_len <= window_size: |
|
|
return self._compute_attention(query, key, value, attention_mask) |
|
|
|
|
|
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(head_dim) |
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
|
|
|
row_idx = torch.arange(q_len, device=query.device).unsqueeze(1) |
|
|
col_idx = torch.arange(k_len, device=query.device).unsqueeze(0) |
|
|
|
|
|
window_mask = (col_idx > row_idx) | (col_idx < row_idx - window_size + 1) |
|
|
window_mask = window_mask.unsqueeze(0).unsqueeze(0) |
|
|
attn_weights = attn_weights.masked_fill(window_mask, float('-inf')) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
return attn_output |
|
|
|
|
|
|
|
|
class IQuestLoopCoderPreTrainedModel(PreTrainedModel): |
|
|
"""Base class for IQuestLoopCoder models.""" |
|
|
config_class = IQuestLoopCoderConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["IQuestLoopCoderDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_cache_class = True |
|
|
_supports_static_cache = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
class IQuestLoopCoderModel(IQuestLoopCoderPreTrainedModel): |
|
|
"""IQuestLoopCoder Transformer decoder model.""" |
|
|
|
|
|
def __init__(self, config: IQuestLoopCoderConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList([ |
|
|
IQuestLoopCoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers) |
|
|
]) |
|
|
self.norm = IQuestLoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
|
|
|
self.gate_projections = nn.ModuleList([ |
|
|
LoopGateProjection(config.num_attention_heads, config.head_dim) |
|
|
for _ in range(config.num_hidden_layers) |
|
|
]) |
|
|
|
|
|
|
|
|
self.loop_num = config.loop_num |
|
|
self.loop_window_size = config.loop_window_size |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
seq_length = inputs_embeds.shape[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_generation_step = past_key_values is not None and seq_length == 1 |
|
|
|
|
|
if is_generation_step: |
|
|
|
|
|
return self._forward_with_cache( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
|
|
|
return self._forward_loop( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
def _forward_loop( |
|
|
self, |
|
|
inputs_embeds: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
position_ids: Optional[torch.LongTensor], |
|
|
output_attentions: bool, |
|
|
output_hidden_states: bool, |
|
|
return_dict: bool, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
"""Forward with loop mechanism (for training and prefill). |
|
|
|
|
|
This implements the Loop mechanism: |
|
|
- Loop 1: Standard attention, stores K1, V1 for each layer |
|
|
- Loop 2+: Mixed attention with gated combination of global (K1,V1) and local (K2,V2) |
|
|
""" |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
|
|
|
if position_ids is None: |
|
|
device = inputs_embeds.device |
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0) |
|
|
|
|
|
if cache_position is None: |
|
|
cache_position = torch.arange(seq_length, device=inputs_embeds.device) |
|
|
|
|
|
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, None, output_attentions) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
|
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache = IQuestLoopCoderCache(self.loop_window_size, len(self.layers)) |
|
|
else: |
|
|
next_decoder_cache = None |
|
|
|
|
|
|
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
|
|
|
hidden_states_normed = decoder_layer.input_layernorm(hidden_states) |
|
|
q1, k1, v1 = decoder_layer.self_attn.get_qkv(hidden_states_normed, position_ids) |
|
|
|
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache.update_shared(k1, v1, layer_idx) |
|
|
|
|
|
|
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=None, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=False, |
|
|
) |
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
|
|
|
for loop_idx in range(2, self.loop_num + 1): |
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
|
|
|
|
k1, v1 = next_decoder_cache.get_shared(layer_idx) if use_cache else (None, None) |
|
|
if k1 is None or v1 is None: |
|
|
|
|
|
hidden_states_normed = decoder_layer.input_layernorm(hidden_states) |
|
|
_, k1, v1 = decoder_layer.self_attn.get_qkv(hidden_states_normed, position_ids) |
|
|
|
|
|
gate_proj = self.gate_projections[layer_idx] |
|
|
|
|
|
hidden_states, gate_mean = decoder_layer.forward_loop2_mixed( |
|
|
hidden_states, |
|
|
k1=k1, |
|
|
v1=v1, |
|
|
gate_proj=gate_proj, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
loop_window_size=self.loop_window_size, |
|
|
) |
|
|
|
|
|
|
|
|
if use_cache and loop_idx == 2: |
|
|
hidden_states_normed = decoder_layer.input_layernorm(hidden_states) |
|
|
_, k2, v2 = decoder_layer.self_attn.get_qkv(hidden_states_normed, position_ids) |
|
|
next_decoder_cache.update_local(k2, v2, layer_idx) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, next_decoder_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_decoder_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
def _forward_with_cache( |
|
|
self, |
|
|
inputs_embeds: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
position_ids: Optional[torch.LongTensor], |
|
|
past_key_values: Optional[Cache], |
|
|
use_cache: bool, |
|
|
output_attentions: bool, |
|
|
output_hidden_states: bool, |
|
|
return_dict: bool, |
|
|
cache_position: Optional[torch.LongTensor], |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
"""Forward with KV cache using loop mechanism (for inference generation). |
|
|
|
|
|
Loop 1: Standard attention, uses shared KV cache (previous tokens + current token) |
|
|
Loop 2+: Mixed attention, uses local KV cache (sliding window) |
|
|
""" |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions) |
|
|
|
|
|
|
|
|
if use_cache: |
|
|
if not isinstance(past_key_values, IQuestLoopCoderCache): |
|
|
|
|
|
next_decoder_cache = IQuestLoopCoderCache(self.loop_window_size, len(self.layers)) |
|
|
|
|
|
if past_key_values is not None: |
|
|
for layer_idx in range(len(self.layers)): |
|
|
try: |
|
|
past_k = past_key_values.key_cache[layer_idx] if hasattr(past_key_values, 'key_cache') else None |
|
|
past_v = past_key_values.value_cache[layer_idx] if hasattr(past_key_values, 'value_cache') else None |
|
|
if past_k is not None and past_v is not None: |
|
|
next_decoder_cache.update_shared(past_k, past_v, layer_idx) |
|
|
except: |
|
|
pass |
|
|
else: |
|
|
next_decoder_cache = past_key_values |
|
|
else: |
|
|
next_decoder_cache = None |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
|
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
|
|
|
past_shared_key, past_shared_value = None, None |
|
|
if next_decoder_cache is not None: |
|
|
past_shared_key, past_shared_value = next_decoder_cache.get_shared(layer_idx) |
|
|
|
|
|
|
|
|
attn_output, k1, v1 = decoder_layer.self_attn.forward_decode_loop1( |
|
|
hidden_states=decoder_layer.input_layernorm(hidden_states), |
|
|
past_shared_key=past_shared_key, |
|
|
past_shared_value=past_shared_value, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache.update_shared(k1, v1, layer_idx) |
|
|
|
|
|
hidden_states = hidden_states + attn_output |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = decoder_layer.post_attention_layernorm(hidden_states) |
|
|
hidden_states = decoder_layer.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (None,) |
|
|
|
|
|
|
|
|
|
|
|
loop1_kv = [] |
|
|
for layer_idx in range(len(self.layers)): |
|
|
if next_decoder_cache is not None: |
|
|
k1_full, v1_full = next_decoder_cache.get_shared(layer_idx) |
|
|
if k1_full is not None and v1_full is not None: |
|
|
|
|
|
loop1_kv.append((k1_full[:, :, -1:, :], v1_full[:, :, -1:, :], k1_full, v1_full)) |
|
|
else: |
|
|
loop1_kv.append((None, None, None, None)) |
|
|
else: |
|
|
loop1_kv.append((None, None, None, None)) |
|
|
|
|
|
for loop_idx in range(2, self.loop_num + 1): |
|
|
for layer_idx, decoder_layer in enumerate(self.layers): |
|
|
|
|
|
k1_current, v1_current, k1_full, v1_full = loop1_kv[layer_idx] |
|
|
if k1_current is None or v1_current is None: |
|
|
continue |
|
|
|
|
|
|
|
|
past_local_key, past_local_value = None, None |
|
|
if next_decoder_cache is not None: |
|
|
past_local_key, past_local_value = next_decoder_cache.get_local(layer_idx) |
|
|
|
|
|
gate_proj = self.gate_projections[layer_idx] |
|
|
|
|
|
|
|
|
attn_output, k2, v2 = decoder_layer.self_attn.forward_decode_loop2( |
|
|
hidden_states=decoder_layer.input_layernorm(hidden_states), |
|
|
k1=k1_current, |
|
|
v1=v1_current, |
|
|
past_shared_key=k1_full[:, :, :-1, :] if k1_full is not None and k1_full.shape[2] > 1 else None, |
|
|
past_shared_value=v1_full[:, :, :-1, :] if v1_full is not None and v1_full.shape[2] > 1 else None, |
|
|
past_local_key=past_local_key, |
|
|
past_local_value=past_local_value, |
|
|
gate_proj=gate_proj, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
loop_window_size=self.loop_window_size, |
|
|
) |
|
|
|
|
|
|
|
|
if use_cache and loop_idx == 2: |
|
|
next_decoder_cache.update_local(k2, v2, layer_idx) |
|
|
|
|
|
hidden_states = hidden_states + attn_output |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = decoder_layer.post_attention_layernorm(hidden_states) |
|
|
hidden_states = decoder_layer.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Cache, |
|
|
output_attentions: bool, |
|
|
): |
|
|
"""Create causal attention mask.""" |
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
sequence_length = input_tensor.shape[1] |
|
|
|
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
|
|
|
past_length = past_key_values.get_seq_length() |
|
|
target_length = past_length + sequence_length |
|
|
elif attention_mask is not None: |
|
|
target_length = attention_mask.shape[-1] |
|
|
else: |
|
|
target_length = sequence_length |
|
|
|
|
|
|
|
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
|
if sequence_length != 1: |
|
|
|
|
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
|
|
|
|
|
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
mask_length = attention_mask.shape[-1] |
|
|
if mask_length <= target_length: |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
|
|
|
class IQuestLoopCoderForCausalLM(IQuestLoopCoderPreTrainedModel, GenerationMixin): |
|
|
"""IQuestLoopCoder model with a causal language modeling head.""" |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = IQuestLoopCoderModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
logits = self.lm_head(hidden_states) |
|
|
logits = logits.float() |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
use_cache=True, |
|
|
**kwargs, |
|
|
): |
|
|
past_length = 0 |
|
|
if past_key_values is not None: |
|
|
past_length = past_key_values.get_seq_length() |
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
elif past_length < input_ids.shape[1]: |
|
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
if cache_position is None: |
|
|
cache_position = torch.arange(past_length, past_length + input_ids.shape[1], device=input_ids.device) |
|
|
elif use_cache: |
|
|
cache_position = cache_position[-input_ids.shape[1]:] |
|
|
|
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": use_cache, |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
|